The Evaluation of a Long-Term Experiment on the Relationships between Weather, Nitrogen Fertilization, Preceding Crop, and Winter Wheat Grain Yield on Cambisol
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0423
Ministry of Agriculture
QK21010124
Ministry of Agriculture
QL24020149
Ministry of Agriculture
QK22010251
Ministry of Agriculture
QK23020056
Ministry of Agriculture
PubMed
38592816
PubMed Central
PMC10974760
DOI
10.3390/plants13060802
PII: plants13060802
Knihovny.cz E-zdroje
- Klíčová slova
- Triticum aestivum L., air temperature, correlation, crop rotation, linear plateau model, mineral N, precipitation,
- Publikační typ
- časopisecké články MeSH
In this paper, a sequence (1979-2022) of a long-term trial established in Lukavec in 1956 (Czech Republic) focusing on the effect of weather, various nitrogen (N) fertilization methods (control, PK, N1PK, N2PK, and N3PK) and preceding crops (cereals, legumes, and oil plants) on winter wheat grain yield is presented. The weather significantly changed at the site of the long-term trial. While the trend in the mean temperature significantly increased, precipitation did not change significantly over the long term. Four relationships between weather and grain yield were evaluated to be significant: (a) the mean temperature in February (r = -0.4) and the precipitation in (b) February (r = -0.4), (c) March (r = -0.4), and (d) May (r = 0.5). The yield trends for all the fertilizer treatments increased, including the unfertilized control. The N3PK treatment provided the highest mean grain yields, while the unfertilized control had the lowest yields. Comparing the preceding crops, the highest yields were harvested when the wheat followed the legumes. On the other hand, the cereals were evaluated as the least suitable preceding crop in terms of grain yield. According to the linear-plateau model, the optimal nitrogen (N) dose for modern wheat varieties, following legumes and under the trial's soil climate conditions, was 131 kg ha-1 N, corresponding to a mean grain yield of 8.2 t ha-1.
Zobrazit více v PubMed
Galloway J.N., Leach A.M., Bleeker A., Erisman J.W. A Chronology of Human Understanding of the Nitrogen Cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20130120. doi: 10.1098/rstb.2013.0120. PubMed DOI PMC
Topham S.A. Catalysis. Volume 7. De Gruyter; Berlin, Germany: 1985. Chapter 1. The History of the Catalytic Synthesis of Ammonia; pp. 1–50.
Birkeland K. On the Oxidation of Atmospheric Nitrogen in Electric Arcs. Trans. Faraday Soc. 1906;2:98. doi: 10.1039/tf9060200098. DOI
Russel D.A., Williams G.G. History of Chemical Fertilizer Development. Soil Sci. Soc. Am. J. 1977;41:260–265. doi: 10.2136/sssaj1977.03615995004100020020x. DOI
Silverstone A.L., Sun T. Gibberellins and the Green Revolution. Trends Plant Sci. 2000;5:1–2. doi: 10.1016/S1360-1385(99)01516-2. PubMed DOI
Kronstad W.E. Wheat: Prospects for Global Improvement: Proceedings of the 5th International Wheat Conference, Ankara, Turkey, 10–14 June 1996. Springer; Berlin/Heidelberg, Germany: 1997. Agricultural Development and Wheat Breeding in the 20th Century; pp. 1–10. DOI
Pujol-Andreu J. Wheat Varieties and Technological Change in Europe, 19th and 20th Centuries: New Issues in Economic History. Hist. Agrar. 2011;54:71–103.
Zhang W.J., Zhang X.Y. A Forecast Analysis on Fertilizers Consumption Worldwide. Environ. Monit. Assess. 2007;133:427–434. doi: 10.1007/s10661-006-9597-7. PubMed DOI
Jepsen M.R., Kuemmerle T., Müller D., Erb K., Verburg P.H., Haberl H., Vesterager J.P., Andrič M., Antrop M., Austrheim G., et al. Transitions in European Land-Management Regimes between 1800 and 2010. Land Use Policy. 2015;49:53–64. doi: 10.1016/j.landusepol.2015.07.003. DOI
Chen H., Deng A., Zhang W., Li W., Qiao Y., Yang T., Zheng C., Cao C., Chen F. Long-Term Inorganic plus Organic Fertilization Increases Yield and Yield Stability of Winter Wheat. Crop J. 2018;6:589–599. doi: 10.1016/j.cj.2018.06.002. DOI
Yu Z., Liu J., Kattel G. Historical Nitrogen Fertilizer Use in China from 1952 to 2018. Earth Syst. Sci. Data. 2022;14:5179–5194. doi: 10.5194/essd-14-5179-2022. DOI
Brisson N., Gate P., Gouache D., Charmet G., Oury F.X., Huard F. Why Are Wheat Yields Stagnating in Europe? A Comprehensive Data Analysis for France. Field Crops Res. 2010;119:201–212. doi: 10.1016/j.fcr.2010.07.012. DOI
Ray D.K., Ramankutty N., Mueller N.D., West P.C., Foley J.A. Recent Patterns of Crop Yield Growth and Stagnation. Nat. Commun. 2012;3:1293. doi: 10.1038/ncomms2296. PubMed DOI
Wang J., Liu W.Z., Dang T.H., Sainju U.M. Nitrogen Fertilization Effect on Soil Water and Wheat Yield in the Chinese Loess Plateau. Agron. J. 2013;105:143–149. doi: 10.2134/agronj2012.0067. DOI
Mandic V., Krnjaja V., Tomic Z., Bijelic Z., Simic A., Muslic D.R., Gogic M. Nitrogen Fertilizer Influence on Wheat Yield and Use Efficiency under Different Environmental Conditions. Chil. J. Agric. Res. 2015;75:92–97. doi: 10.4067/S0718-58392015000100013. DOI
Litke L., Gaile Z., Ruža A. Effect of Nitrogen Fertilization on Winter Wheat Yield and Yield Quality. Agron. Res. 2018;16:500–509. doi: 10.15159/AR.18.064. DOI
Skudra I., Ruza A. Effect of Nitrogen and Sulphur Fertilization on Chlorophyll Content in Winter Wheat. Rural Sustain. Res. 2017;37:29–37. doi: 10.1515/plua-2017-0004. DOI
Rasmussen I.S., Dresbøll D.B., Thorup-Kristensen K. Winter Wheat Cultivars and Nitrogen (N) Fertilization-Effects on Root Growth, N Uptake Efficiency and N Use Efficiency. Eur. J. Agron. 2015;68:38–49. doi: 10.1016/j.eja.2015.04.003. DOI
Savci S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia. 2012;1:287–292. doi: 10.1016/j.apcbee.2012.03.047. DOI
Vašák F., Černý J., Buráňová Š., Kulhánek M., Balík J. Soil PH Changes in Long-Term Field Experiments with Different Fertilizing Systems. Soil Water Res. 2015;10:19–23. doi: 10.17221/7/2014-SWR. DOI
Hendricks G.S., Shukla S., Roka F.M., Sishodia R.P., Obreza T.A., Hochmuth G.J., Colee J. Economic and Environmental Consequences of Overfertilization under Extreme Weather Conditions. J. Soil Water Conserv. 2019;74:160–171. doi: 10.2489/jswc.74.2.160. DOI
Zhang M., Wang H., Yi Y., Ding J., Zhu M., Li C., Guo W., Feng C., Zhu X. Effect of Nitrogen Levels and Nitrogen Ratios on Lodging Resistance and Yield Potential of Winter Wheat (Triticum aestivum L.) PLoS ONE. 2017;12:e0187543. doi: 10.1371/journal.pone.0187543. PubMed DOI PMC
Khan A., Ahmad A., Ali W., Hussain S., Ajayo B.S., Raza M.A., Kamran M., Te X., al Amin N., Ali S., et al. Optimization of Plant Density and Nitrogen Regimes to Mitigate Lodging Risk in Wheat. Agron. J. 2020;112:2535–2551. doi: 10.1002/agj2.20211. DOI
Hochmuth G., Hanlon E., Overman A. Fertilizer Experimentation, Data Analyses, and Interpretation for Developing Fertilization Recommendations—Examples with Vegetable Crop Research 2017. [(accessed on 16 November 2023)]. Available online: https://edis.ifas.ufl.edu/publication/SS548.
Kong L., Xie Y., Hu L., Si J., Wang Z. Excessive Nitrogen Application Dampens Antioxidant Capacity and Grain Filling in Wheat as Revealed by Metabolic and Physiological Analyses. Sci. Rep. 2017;7:43363. doi: 10.1038/srep43363. PubMed DOI PMC
Cherkasov G.N., Sokoroev N.S., Voronin A.N., Trapeznikov S.V. Effect of Weather Conditions on Soil Fertility, Crop Yield, and Fertilizer Efficiency in the Central Chernozem Zone. Russ. Agric. Sci. 2010;36:353–355. doi: 10.3103/S1068367410050101. DOI
Linina A., Ruza A. The Influence of Cultivar, Weather Conditions and Nitrogen Fertilizer on Winter Wheat Grain Yield. Agron. Res. 2018;16:147–156. doi: 10.15159/AR.18.034. DOI
Lawes J.B., Gilbert J.H. Our Climate and Our Wheat Crops. J. R. Agric. Soc. Engl. 1880;16:173–210.
Shaw W.N. Seasons in the British Isles from 1878. J. R. Stat. Soc. 1905;68:247. doi: 10.2307/2339607. DOI
Hooker R.H. Correlation of the Weather and Crops. J. R. Stat. Soc. 1907;70:1–51. doi: 10.2307/2339501. DOI
Walter A. The Sugar Industry of Mauritius: A Study in Correlation Including a Scheme of Insurance of the Cane Crop against Damage Caused by Cyclones. Nature. 1911;87:344. doi: 10.1038/087344a0. DOI
Kravchenko A.N., Robertson G.P., Thelen K.D., Harwood R.R. Management, Topographical, and Weather Effects on Spatial Variability of Crop Grain Yields. Agron. J. 2005;97:514–523. doi: 10.2134/agronj2005.0514. DOI
Hatfield J.L., Dold C. Agroclimatology and Wheat Production: Coping with Climate Change. Front. Plant Sci. 2018;9:263551. doi: 10.3389/fpls.2018.00224. PubMed DOI PMC
Addy J.W.G., Ellis R.H., Macdonald A.J., Semenov M.A., Mead A. Investigating the Effects of Inter-Annual Weather Variation (1968–2016) on the Functional Response of Cereal Grain Yield to Applied Nitrogen, Using Data from the Rothamsted Long-Term Experiments. Agric. For. Meteorol. 2020;284:107898. doi: 10.1016/j.agrformet.2019.107898. PubMed DOI PMC
Thai T.H., Bellingrath-Kimura S.D., Hoffmann C., Barkusky D. Effect of Long-Term Fertiliser Regimes and Weather on Spring Barley Yields in Sandy Soil in North-East Germany. Arch. Agron. Soil Sci. 2020;66:1812–1826. doi: 10.1080/03650340.2019.1697436. DOI
Werndl C. On Defining Climate and Climate Change. Br. J. Philos. Sci. 2016;67:337–364. doi: 10.1093/bjps/axu048. DOI
Pielke R.A. What Is Climate Change? Energy Environ. 2004;15:515–520. doi: 10.1260/0958305041494576. DOI
Zahradníček P., Brázdil R., Štěpánek P., Trnka M. Reflections of Global Warming in Trends of Temperature Characteristics in the Czech Republic, 1961–2019. Int. J. Climatol. 2021;41:1211–1229. doi: 10.1002/joc.6791. DOI
Hemmerle H., Bayer P. Climate Change Yields Groundwater Warming in Bavaria, Germany. Front. Earth Sci. 2020;8:575894. doi: 10.3389/feart.2020.575894. DOI
Benz S.A., Bayer P., Winkler G., Blum P. Recent Trends of Groundwater Temperatures in Austria. Hydrol. Earth Syst. Sci. 2018;22:3143–3154. doi: 10.5194/hess-22-3143-2018. DOI
Ribes A., Corre L., Gibelin A.L., Dubuisson B. Issues in Estimating Observed Change at the Local Scale—A Case Study: The Recent Warming over France. Int. J. Climatol. 2016;36:3794–3806. doi: 10.1002/joc.4593. DOI
Twardosz R., Walanus A., Guzik I. Warming in Europe: Recent Trends in Annual and Seasonal Temperatures. Pure Appl. Geophys. 2021;178:4021–4032. doi: 10.1007/s00024-021-02860-6. DOI
Brown P.J., DeGaetano A.T. A Paradox of Cooling Winter Soil Surface Temperatures in a Warming Northeastern United States. Agric. For. Meteorol. 2011;151:947–956. doi: 10.1016/j.agrformet.2011.02.014. DOI
Griffiths G.M., Chambers L.E., Haylock M.R., Manton M.J., Nicholls N., Baek H.J., Choi Y., Della-Marta P.M., Gosai A., Iga N., et al. Change in Mean Temperature as a Predictor of Extreme Temperature Change in the Asia-Pacific Region. Int. J. Climatol. 2005;25:1301–1330. doi: 10.1002/joc.1194. DOI
Malhi G.S., Kaur M., Kaushik P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability. 2021;13:1318. doi: 10.3390/su13031318. DOI
Szwed M. Variability of Precipitation in Poland under Climate Change. Theor. Appl. Climatol. 2019;135:1003–1015. doi: 10.1007/s00704-018-2408-6. DOI
Easterling D.R., Kunkel K.E., Arnold J.R., Knutson T.R., LeGrande A.N., Leung L.R., Vose R.S., Waliser D.E., Wehner M. Precipitation Change in the United States. Fourth Natl. Clim. Assess. 2017;1:207–230. doi: 10.7930/J0H993CC. DOI
Brázdil R., Trnka M., Dobrovolný P., Chromá K., Hlavinka P., Žalud Z. Variability of Droughts in the Czech Republic, 1881–2006. Theor. Appl. Climatol. 2009;97:297–315. doi: 10.1007/s00704-008-0065-x. DOI
Luo Q., O’Leary G., Cleverly J., Eamus D. Effectiveness of Time of Sowing and Cultivar Choice for Managing Climate Change: Wheat Crop Phenology and Water Use Efficiency. Int. J. Biometeorol. 2018;62:1049–1061. doi: 10.1007/s00484-018-1508-4. PubMed DOI
Bindi M., Olesen J.E. The Responses of Agriculture in Europe to Climate Change. Reg. Environ. Chang. 2011;11:151–158. doi: 10.1007/s10113-010-0173-x. DOI
Pechanec V., Machar I., Kilianova H., Vlckova V., Bucek A., Plasek V. Prediction of Climate Change Impacts on Sustainable Agricultural Management in the Czech Republic. Fresenius Environ. Bull. 2017;26:7580–7586.
Eitzinger J., Trnka M., Semerádová D., Thaler S., Svobodová E., Hlavinka P., Šiška B., Takáč J., Malatinská L., Nováková M., et al. Regional Climate Change Impacts on Agricultural Crop Production in Central and Eastern Europe—Hotspots, Regional Differences and Common Trends. J. Agric. Sci. 2013;151:787–812. doi: 10.1017/S0021859612000767. DOI
Žalud Z., Trnka M., Dubrovský M., Hlavinka P., Semerádová D., Kocmánková E. Climate Change Impacts on Selected Aspects of the Czech Agricultural Production. Plant Prot. Sci. 2009;45:S11–S19. doi: 10.17221/2833-PPS. DOI
Macholdt J., Piepho H.P., Honermeier B., Perryman S., Macdonald A., Poulton P. The Effects of Cropping Sequence, Fertilization and Straw Management on the Yield Stability of Winter Wheat (1986–2017) in the Broadbalk Wheat Experiment, Rothamsted, UK. J. Agric. Sci. 2020;158:65–79. doi: 10.1017/S0021859620000301. DOI
Sieling K., Christen O. Crop Rotation Effects on Yield of Oilseed Rape, Wheat and Barley and Residual Effects on the Subsequent Wheat. Arch. Agron. Soil Sci. 2015;61:1531–1549. doi: 10.1080/03650340.2015.1017569. DOI
Friberg H., Persson P., Jensen D.F., Bergkvist G. Preceding Crop and Tillage System Affect Winter Survival of Wheat and the Fungal Communities on Young Wheat Roots and in Soil. FEMS Microbiol. Lett. 2019;366:fnz189. doi: 10.1093/femsle/fnz189. PubMed DOI PMC
Gawęda D., Haliniarz M. Grain Yield and Quality of Winter Wheat Depending on Previous Crop and Tillage System. Agric. 2021;11:133. doi: 10.3390/agriculture11020133. DOI
Angus J.F., Kirkegaard J.A., Hunt J.R., Ryan M.H., Ohlander L., Peoples M.B. Break Crops and Rotations for Wheat. Crop Pasture Sci. 2015;66:523–552. doi: 10.1071/CP14252. DOI
Fisher R.A. III. The Influence of Rainfall on the Yield of Wheat at Rothamsted. Philos. Trans. R. Soc. London. Ser. B Contain. Pap. Biol. Character. 1925;213:89–142. doi: 10.1098/rstb.1925.0003. DOI
Matuszko D., Weglarczyk S. Relationship between Sunshine Duration and Air Temperature and Contemporary Global Warming. Int. J. Climatol. 2015;35:3640–3653. doi: 10.1002/joc.4238. DOI
Labudová L., Faško P., Ivanáková G. Changes in Climate and Changing Climate Regions in Slovakia. Morav. Geogr. Rep. 2015;23:70–81. doi: 10.1515/mgr-2015-0019. DOI
Al-Ghussain L. Global Warming: Review on Driving Forces and Mitigation. Environ. Prog. Sustain. Energy. 2019;38:13–21. doi: 10.1002/ep.13041. DOI
Blöschl G., Hall J., Viglione A., Perdigão R.A.P., Parajka J., Merz B., Lun D., Arheimer B., Aronica G.T., Bilibashi A., et al. Changing Climate Both Increases and Decreases European River Floods. Nature. 2019;573:108–111. doi: 10.1038/s41586-019-1495-6. PubMed DOI
Stillman J.H. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology. 2019;34:86–100. doi: 10.1152/physiol.00040.2018. PubMed DOI
Agovino M., Casaccia M., Ciommi M., Ferrara M., Marchesano K. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic. 2019;105:525–543. doi: 10.1016/j.ecolind.2018.04.064. DOI
Forzieri G., Bianchi A., Silva F.B.E., Marin Herrera M.A., Leblois A., Lavalle C., Aerts J.C.J.H., Feyen L. Escalating Impacts of Climate Extremes on Critical Infrastructures in Europe. Glob. Environ. Chang. 2018;48:97–107. doi: 10.1016/j.gloenvcha.2017.11.007. PubMed DOI PMC
Rossati A. Global Warming and Its Health Impact. Int. J. Occup. Environ. Med. 2017;8:7–20. doi: 10.15171/ijoem.2017.963. PubMed DOI PMC
Dore M.H.I. Climate Change and Changes in Global Precipitation Patterns: What Do We Know? Environ. Int. 2005;31:1167–1181. doi: 10.1016/j.envint.2005.03.004. PubMed DOI
Supit I., van Diepen C.A., de Wit A.J.W., Kabat P., Baruth B., Ludwig F. Recent Changes in the Climatic Yield Potential of Various Crops in Europe. Agric. Syst. 2010;103:683–694. doi: 10.1016/j.agsy.2010.08.009. DOI
Asseng S., Foster I., Turner N.C. The Impact of Temperature Variability on Wheat Yields. Glob. Chang. Biol. 2011;17:997–1012. doi: 10.1111/j.1365-2486.2010.02262.x. DOI
Lhotka O., Kyselý J., Farda A. Climate Change Scenarios of Heat Waves in Central Europe and Their Uncertainties. Theor. Appl. Climatol. 2018;131:1043–1054. doi: 10.1007/s00704-016-2031-3. DOI
Landau S., Mitchell R.A.C., Barnett V., Colls J.J., Craigon J., Payne R.W. A Parsimonious, Multiple-Regression Model of Wheat Yield Response to Environment. Agric. For. Meteorol. 2000;101:151–166. doi: 10.1016/S0168-1923(99)00166-5. DOI
Kunzová E., Hejcman M. Yield Development of Winter Wheat over 50 Years of Nitrogen, Phosphorus and Potassium Application on Greyic Phaeozem in the Czech Republic. Eur. J. Agron. 2010;33:166–174. doi: 10.1016/j.eja.2010.05.002. DOI
Hejcman M., Kunzová E., Šrek P. Sustainability of Winter Wheat Production over 50 Years of Crop Rotation and N, P and K Fertilizer Application on Illimerized Luvisol in the Czech Republic. Field Crops Res. 2012;139:30–38. doi: 10.1016/j.fcr.2012.10.005. DOI
Berzsenyi Z., Győrffy B., Lap D. Effect of Crop Rotation and Fertilisation on Maize and Wheat Yields and Yield Stability in a Long-Term Experiment. Eur. J. Agron. 2000;13:225–244. doi: 10.1016/S1161-0301(00)00076-9. DOI
Macholdt J., Piepho H.P., Honermeier B. Mineral NPK and Manure Fertilisation Affecting the Yield Stability of Winter Wheat: Results from a Long-Term Field Experiment. Eur. J. Agron. 2019;102:14–22. doi: 10.1016/j.eja.2018.10.007. DOI
Hao M.-D., Fan J., Wang Q.-J., Dang T.-H., Guo S.-L., Wang J.-J. Wheat Grain Yield and Yield Stability in a Long-Term Fertilization Experiment on the Loess Plateau. Pedosphere. 2007;17:257–264. doi: 10.1016/S1002-0160(07)60032-0. DOI
Girma K., Holtz S.L., Arnall D.B., Tubaña B.S., Raun W.R. The Magruder Plots: Untangling the Puzzle. Agron. J. 2007;99:1191–1198. doi: 10.2134/agronj2007.0008. DOI
Poulton P.R. Rothamsted Research Guide to the Classical and Other Long-Term Experiments, Datasets and Sample Archive; Rothamsted Research, Harpenden, UK, 2012
Lithourgidis A.S., Damalas C.A., Gagianas A.A. Long-Term Yield Patterns for Continuous Winter Wheat Cropping in Northern Greece. Eur. J. Agron. 2006;25:208–214. doi: 10.1016/j.eja.2006.05.003. DOI
Hermann T., Táth G. Evaluating the Effect of Nutrient Levels of Major Soil Types on the Productivity of Wheatlands in Hungary. Commun. Soil Sci. Plant Anal. 2011;42:1497–1509. doi: 10.1080/00103624.2011.581728. DOI
Zumr D. Agricultural Land Degradation in the Czech Republic. Handb. Environ. Chem. 2023;121:35–58. doi: 10.1007/698_2022_928. DOI
Černý J., Balík J., Kulhánek M., Časová K., Nedvěd V. Mineral and Organic Fertilization Efficiency in Long-Term Stationary Experiments. Plant Soil Environ. 2010;56:28–36. doi: 10.17221/200/2009-PSE. DOI
Buráňová Š., Černý J., Kulhanek M., Vašák F., Balik J. Influence of Mineral and Organic Fertilizers on Yield and Nitrogen Efficiency of Winter Wheat. Int. J. Plant Prod. 2015;9:257–272.
Hlisnikovský L., Menšík L., Barłóg P., Kunzová E. How Weather and Fertilization Affected Grain Yield and Stability of Winter Wheat in a Long-Term Trial in the South Moravian Region, Czech Republic. Agronomy. 2023;13:2293. doi: 10.3390/agronomy13092293. DOI
Lumpkin T.A. Advances in Wheat Genetics: From Genome to Field. Springer; Berlin/Heidelberg, Germany: 2015. pp. 13–20. DOI
Jobson E.M., Johnston R.E., Oiestad A.J., Martin J.M., Giroux M.J. The Impact of the Wheat Rht-B1b Semi-Dwarfing Allele on Photosynthesis and Seed Development under Field Conditions. Front. Plant Sci. 2019;10:388208. doi: 10.3389/fpls.2019.00051. PubMed DOI PMC
Hedden P. The Genes of the Green Revolution. Trends Genet. 2003;19:5–9. doi: 10.1016/S0168-9525(02)00009-4. PubMed DOI
Schauberger B., Ben-Ari T., Makowski D., Kato T., Kato H., Ciais P. Yield Trends, Variability and Stagnation Analysis of Major Crops in France over More than a Century. Sci. Rep. 2018;8:16865. doi: 10.1038/s41598-018-35351-1. PubMed DOI PMC
Lin M., Huybers P. Reckoning Wheat Yield Trends. Environ. Res. Lett. 2012;7:024016. doi: 10.1088/1748-9326/7/2/024016. DOI
Hlisnikovský L., Menšík L., Kunzová E. Development and the Effect of Weather and Mineral Fertilization on Grain Yield and Stability of Winter Wheat Following Alfalfa—Analysis of Long-Term Field Trial. Plants. 2023;12:1392. doi: 10.3390/plants12061392. PubMed DOI PMC
Sieling K., Stahl C., Winkelmann C., Christen O. Growth and Yield of Winter Wheat in the First 3 Years of a Monoculture under Varying N Fertilization in NW Germany. Eur. J. Agron. 2005;22:71–84. doi: 10.1016/j.eja.2003.12.004. DOI
St Luce, M.; Grant, C.A.; Zebarth, B.J.; Ziadi, N.; O’Donovan, J.T.; Blackshaw, R.E.; Harker, K.N.; Johnson, E.N.; Gan, Y.; Lafond, G.P.; et al. Legumes Can Reduce Economic Optimum Nitrogen Rates and Increase Yields in a Wheat-Canola Cropping Sequence in Western Canada. Field Crops Res. 2015;179:12–25. doi: 10.1016/j.fcr.2015.04.003. DOI
Götze P., Rücknagel J., Wensch-Dorendorf M., Märländer B., Christen O. Crop Rotation Effects on Yield, Technological Quality and Yield Stability of Sugar Beet after 45 Trial Years. Eur. J. Agron. 2017;82:50–59. doi: 10.1016/j.eja.2016.10.003. DOI
Nielsen D.C., Vigil M.F. Wheat Yield and Yield Stability of Eight Dryland Crop Rotations. Agron. J. 2018;110:594–601. doi: 10.2134/agronj2017.07.0407. DOI
Preissel S., Reckling M., Schläfke N., Zander P. Magnitude and Farm-Economic Value of Grain Legume Pre-Crop Benefits in Europe: A Review. Field Crops Res. 2015;175:64–79. doi: 10.1016/j.fcr.2015.01.012. DOI
Kebede E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021;5:767998. doi: 10.3389/fsufs.2021.767998. DOI
Menšík L., Hlisnikovský L., Pospíšilová L., Kunzová E. The Effect of Application of Organic Manures and Mineral Fertilizers on the State of Soil Organic Matter and Nutrients in the Long-Term Field Experiment. J. Soils Sediments. 2018;18:2813–2822. doi: 10.1007/s11368-018-1933-3. DOI
Watson C.A., Reckling M., Preissel S., Bachinger J., Bergkvist G., Kuhlman T., Lindström K., Nemecek T., Topp C.F.E., Vanhatalo A., et al. Grain Legume Production and Use in European Agricultural Systems. Adv. Agron. 2017;144:235–303. doi: 10.1016/bs.agron.2017.03.003. DOI
Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC
Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591. doi: 10.1093/biomet/52.3-4.591. DOI
Conover W., Iman R. Multiple-Comparisons Procedures. Informal Report. Los Alamos National Lab.(LANL); Los Alamos, NM, USA: 1979.
Mann H.B. Nonparametric Tests Against Trend. Econometrica. 1945;13:245. doi: 10.2307/1907187. DOI
Kendall M.G. Rank Correlation Methods. 4th ed. Griffin; London, UK: 1975.
Sen P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968;63:1379–1389. doi: 10.1080/01621459.1968.10480934. DOI