The Effects of Weather and Fertilization on Grain Yield and Stability of Winter Wheat Growing on Orthic Luvisol-Analysis of Long-Term Field Experiment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0418
Ministry of Agriculture
QK 1810010
Ministry of Agriculture
QK 21020155
Ministry of Agriculture
PubMed
35890459
PubMed Central
PMC9320575
DOI
10.3390/plants11141825
PII: plants11141825
Knihovny.cz E-zdroje
- Klíčová slova
- Triticum aestivum L., climate change, farmyard manure, mineral fertilizers, non-linear response models, precipitation, temperature,
- Publikační typ
- časopisecké články MeSH
Based on a long-term experiment in Prague, established in 1954, we analyzed the effect of weather and seven fertilization treatments (mineral and manure treatments) on winter wheat grain yield (GY) and stability. In total, 23 seasons were analyzed, where a wheat crop followed a summer crop of potatoes. A regression analysis showed that, since the experiment started, there has been a significant increase in the annual daily maximum, average, and minimum temperature of 0.5 °C, and an increase in annual rainfall of 0.3 mm. Grain yield was positively associated with April precipitation, mean daily temperature in October, and daily maximum temperature in February. Yields were most stable between years with two fertilizer treatments that supplied a mean of 47 kg N ha-1yr-1, 54 kg P ha-1yr-1, and 108 kg K ha-1yr-1. The rate of N at which grain yield was optimized was determined according to the linear-plateau (LP) and quadratic response models as 44 kg N ha-1yr-1 for the long-strawed varieties and 87 kg N ha-1yr-1for short-strawed varieties. A gradual increase in yields was observed in all treatments, including the unfertilized control, which was attributed to improved varieties rather than to a changing climate.
Zobrazit více v PubMed
Nielsen D.C., Vigil M.F. Wheat yield and yield stability of eight dryland crop rotations. Agron. J. 2018;110:594–601. doi: 10.2134/agronj2017.07.0407. DOI
Berzsenyi Z., Győrffy B., Lap D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 2000;13:225–244. doi: 10.1016/S1161-0301(00)00076-9. DOI
Rose T., Nagler S., Kage H. Yield formation of Central-European winter wheat cultivars on a large scale perspective. Eur. J. Agron. 2017;86:93–102. doi: 10.1016/j.eja.2017.03.003. DOI
Peng Z., Wang L., Xie J., Li L., Coulter J.A., Zhang R., Luo Z., Cai L., Carberry P., Whitbread A. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agric. Water Manag. 2020;231:106024. doi: 10.1016/j.agwat.2020.106024. DOI
Fisher R.A. III. The influence of rainfall on the yield of wheat at Rothamsted. Philos. Trans. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character. 1925;213:89–142. doi: 10.1098/rstb.1925.0003. DOI
Werndl C. On Defining Climate and Climate Change. Br. J. Philos. Sci. 2016;67:337–364. doi: 10.1093/bjps/axu048. DOI
Barrow E.M. Scenarios of climate change for the European Community. Eur. J. Agron. 1993;2:247–260. doi: 10.1016/S1161-0301(14)80174-3. DOI
Butterfield R.E., Morison J.I.L. Modelling the impact of climatic warming on winter cereal development. Agric. For. Meteorol. 1992;62:241–261. doi: 10.1016/0168-1923(92)90017-X. DOI
Bindi M., Castellani M., Maracchi G., Miglietta F. The ontogenesis of wheat under scenarios of increased air temperature in Italy: A simulation study. Eur. J. Agron. 1993;2:261–280. doi: 10.1016/S1161-0301(14)80175-5. DOI
Anderson R., Bayer P.E., Edwards D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020;56:197–202. doi: 10.1016/j.pbi.2019.12.006. PubMed DOI
Pullens J.W.M., Sharif B., Trnka M., Balek J., Semenov M.A., Olesen J.E. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 2019;272–273:30–39. doi: 10.1016/j.agrformet.2019.03.023. DOI
Olesen J.E., Bindi M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002;16:239–262. doi: 10.1016/S1161-0301(02)00004-7. DOI
Harkness C., Semenov M.A., Areal F., Senapati N., Trnka M., Balek J., Bishop J. Adverse weather conditions for UK wheat production under climate change. Agric. For. Meteorol. 2020;282–283:107862. doi: 10.1016/j.agrformet.2019.107862. PubMed DOI PMC
Abd-Elmabod S.K., Muñoz-Rojas M., Jordán A., Anaya-Romero M., Phillips J.D., Laurence J., Zhang Z., Pereira P., Fleskens L., van der Ploeg M., et al. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma. 2020;374:114453. doi: 10.1016/j.geoderma.2020.114453. DOI
Brázdil R., Trnka M., Dobrovolný P., Chromá K., Hlavinka P., Žalud Z. Variability of droughts in the Czech Republic, 1881–2006. Theor. Appl. Climatol. 2009;97:297–315. doi: 10.1007/s00704-008-0065-x. DOI
Zahradníček P., Trnka M., Brázdil R., Možný M., Štěpánek P., Hlavinka P., Žalud Z., Malý A., Semerádová D., Dobrovolný P., et al. The extreme drought episode of August 2011-May 2012 in the Czech Republic. Int. J. Climatol. 2015;35:3335–3352. doi: 10.1002/joc.4211. DOI
Hlisnikovský L., Kunzová E., Hejcman M., Dvořáček V. Effect of fertilizer application, soil type, and year on yield and technological parameters of winter wheat (Triticum aestivum) in the Czech Republic. Arch. Agron. Soil Sci. 2015;61:33–53. doi: 10.1080/03650340.2014.921808. DOI
Le Gouis J., Oury F.X., Charmet G. How changes in climate and agricultural practices influenced wheat production in Western Europe. J. Cereal Sci. 2020;93:102960. doi: 10.1016/j.jcs.2020.102960. DOI
Thai T.H., Bellingrath-Kimura S.D., Hoffmann C., Barkusky D. Effect of long-term fertiliser regimes and weather on spring barley yields in sandy soil in North-East Germany. Arch. Agron. Soil Sci. 2020;66:1812–1826. doi: 10.1080/03650340.2019.1697436. DOI
Addy J.W.G., Ellis R.H., Macdonald A.J., Semenov M.A., Mead A. Investigating the effects of inter-annual weather variation (1968–2016) on the functional response of cereal grain yield to applied nitrogen, using data from the Rothamsted Long-Term Experiments. Agric. For. Meteorol. 2020;284:107898. doi: 10.1016/j.agrformet.2019.107898. PubMed DOI PMC
Macholdt J., Styczen M.E., Macdonald A., Piepho H.P., Honermeier B. Long-term analysis from a cropping system perspective: Yield stability, environmental adaptability, and production risk of winter barley. Eur. J. Agron. 2020;117:126056. doi: 10.1016/j.eja.2020.126056. DOI
Macholdt J., Piepho H.P., Honermeier B. Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment. Eur. J. Agron. 2019;102:14–22. doi: 10.1016/j.eja.2018.10.007. DOI
Hochmuth G., Hanlon E., Overman A. Fertilizer Experimentation, Data Analyses, and Interpretation for Developing Fertilization Recommendations: Examples with Vegetable Crop Research. 2017. [(accessed on 16 May 2022)]. Available online: https://edis.ifas.ufl.edu/publication/SS548.
Zahradníček P., Brázdil R., Štěpánek P., Trnka M. Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. Int. J. Climatol. 2021;41:1211–1229. doi: 10.1002/joc.6791. DOI
Brázdil R., Zahradníček P., Dobrovolný P., Štěpánek P., Trnka M. Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. Int. J. Climatol. 2021;41:3881–3902. doi: 10.1002/joc.7048. DOI
Hejcman M., Kunzová E., Šrek P. Sustainability of winter wheat production over 50 years of crop rotation and N, P and K fertilizer application on illimerized luvisol in the Czech Republic. Field Crop. Res. 2012;139:30–38. doi: 10.1016/j.fcr.2012.10.005. DOI
Kunzová E., Hejcman M. Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field Crop. Res. 2009;111:226–234. doi: 10.1016/j.fcr.2008.12.008. DOI
Hejcman M., Kunzová E. Sustainability of winter wheat production on sandy-loamy Cambisol in the Czech Republic: Results from a long-term fertilizer and crop rotation experiment. Field Crop. Res. 2010;115:191–199. doi: 10.1016/j.fcr.2009.11.004. DOI
Austin R.B. Yield of wheat in the United Kingdom: Recent advances and prospects. Crop Sci. 1999;39:1604–1610. doi: 10.2135/cropsci1999.3961604x. DOI
Ahrends H.E., Siebert S., Rezaei E.E., Seidel S.J., Hüging H., Ewert F., Döring T., Rueda-Ayala V., Eugster W., Gaiser T. Nutrient supply affects the yield stability of major European crops A 50 year study. Environ. Res. Lett. 2020;16:014003. doi: 10.1088/1748-9326/abc849. DOI
Macholdt J., Piepho H.P., Honermeier B., Perryman S., Macdonald A., Poulton P. The effects of cropping sequence, fertilization and straw management on the yield stability of winter wheat (1986–2017) in the Broadbalk Wheat Experiment, Rothamsted, UK. J. Agric. Sci. 2020;158:65–79. doi: 10.1017/S0021859620000301. DOI
Blanchet G., Gavazov K., Bragazza L., Sinaj S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016;230:116–126. doi: 10.1016/j.agee.2016.05.032. DOI
Maltas A., Kebli H., Oberholzer H.R., Weisskopf P., Sinaj S. The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degrad. Dev. 2018;29:926–938. doi: 10.1002/ldr.2913. DOI
Du Y., Cui B., Zhang Q., Wang Z., Sun J., Niu W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena. 2020;193:104617. doi: 10.1016/j.catena.2020.104617. DOI
Hlisnikovský L., Meník L., Kunzová E. The development of winter wheat yield and quality under different fertilizer regimes and soil-climatic conditions in the Czech Republic. Agronomy. 2020;10:1160. doi: 10.3390/agronomy10081160. DOI
Faber A., Jarosz Z., Rutkowska A., Jadczyszyn T. Reduction of nitrogen losses in winter wheat grown on light soils. Agronomy. 2021;11:2337. doi: 10.3390/agronomy11112337. DOI
Tabak M., Lepiarczyk A., Filipek-Mazur B., Lisowska A. Efficiency of nitrogen fertilization of winter wheat depending on sulfur fertilization. Agronomy. 2020;10:1304. doi: 10.3390/agronomy10091304. DOI
Liu L., Yao S., Zhang H., Muhammed A., Xu J., Li R., Zhang D., Zhang S., Yang X. Soil nitrate nitrogen buffer capacity and environmentally safe nitrogen rate for winter wheat-summer maize cropping in Northern China. Agric. Water Manag. 2019;213:445–453. doi: 10.1016/j.agwat.2018.11.001. DOI
Ortuzar-Iragorri M.A., Castellón A., Alonso A., Besga G., Estavillo J.M., Aizpurua A. Estimation of optimum nitrogen fertilizer rates in winter wheat in humid Mediterranean conditions, I: Selection of yield and protein response models. Commun. Soil Sci. Plant Anal. 2010;41:2293–2300. doi: 10.1080/00103624.2010.508094. DOI
Evans A.E., Mateo-Sagasta J., Qadir M., Boelee E., Ippolito A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 2019;36:20–27. doi: 10.1016/j.cosust.2018.10.003. DOI
Bouwman L., Goldewijk K.K., Van Der Hoek K.W., Beusen A.H.W., Van Vuuren D.P., Willems J., Rufino M.C., Stehfest E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proc. Natl. Acad. Sci. USA. 2013;110:20882–20887. doi: 10.1073/pnas.1012878108. PubMed DOI PMC
Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC
FAO . World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for soil Maps. Food and Agriculture Organization of the United Nations (FAO); Rome, Italy: 2014.
Pour-Aboughadareh A., Yousefian M., Moradkhani H., Poczai P., Siddique K.H.M. STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Appl. Plant Sci. 2019;7:e01211. doi: 10.1002/aps3.1211. PubMed DOI PMC