Long-Term Study of the Effects of Environment, Variety, and Fertilisation on Yield and Stability of Spring Barley Grain
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0423
Ministry of Agriculture
QL24020149
Ministry of Agriculture
QK22010251
Ministry of Agriculture
QK23020056
Ministry of Agriculture
PubMed
39409615
PubMed Central
PMC11478852
DOI
10.3390/plants13192745
PII: plants13192745
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum vulgare L., climate change, grain production, inter-annual yield variability, nitrogen optimisation, weather pattern,
- Publikační typ
- časopisecké články MeSH
The stability and yield of barley grain are affected by several factors, such as climatic conditions, fertilisation, and the different barley varieties. In a long-term experiment in Prague, Czech Republic, established in 1955, we analysed the weather trends and how weather, fertilisation (10 treatments in total), and different barley varieties affected grain yield and stability. A total of 44 seasons were evaluated. Trends in mean, minimum, and maximum temperatures from 1953 to 2023, as well as sunshine duration from 1961 to 2022, showed statistically significant increases. The trend for annual precipitation from 1953 to 2023 was not significant, but changes in precipitation were recorded via seasonal precipitation concentration indexes. The unfertilised Control and farmyard manure (FYM) provided the lowest mean yields. Mineral fertilisers (NPK) and FYM+NPK increased grain yield, ranging from 4.9 t ha-1 to 5.5 t ha-1. Three notable correlations between weather conditions and yields were observed: (1) June precipitation (r = 0.4), (2) minimal temperature in July (r = 0.3), and (3) sunshine duration in May (r = -0.5). According to the linear-plateau response model, the reasonable N dose is 55 kg ha-1, resulting in a mean yield of 6.7 t ha-1 for the contemporarily used barley variety Sebastián.
Zobrazit více v PubMed
Gardi M.W., Haussmann B.I.G., Malik W.A., Högy P. Effects of Elevated Atmospheric CO2 and Its Interaction with Temperature and Nitrogen on Yield of Barley (Hordeum vulgare L.): A Meta-Analysis. Plant Soil. 2022;475:535–550. doi: 10.1007/s11104-022-05386-5. DOI
Yiğit A., Chmielewski F.-M. A Deeper Insight into the Yield Formation of Winter and Spring Barley in Relation to Weather and Climate Variability. Agronomy. 2024;14:1503. doi: 10.3390/agronomy14071503. DOI
Bento V.A., Ribeiro A.F.S., Russo A., Gouveia C.M., Cardoso R.M., Soares P.M.M. The Impact of Climate Change in Wheat and Barley Yields in the Iberian Peninsula. Sci. Rep. 2021;11:15484. doi: 10.1038/s41598-021-95014-6. PubMed DOI PMC
Mansour E., Moustafa E.S.A., Qabil N., Abdelsalam A., Wafa H.A., El Kenawy A., Casas A.M., Igartua E. Assessing Different Barley Growth Habits under Egyptian Conditions for Enhancing Resilience to Climate Change. Field Crops Res. 2018;224:67–75. doi: 10.1016/j.fcr.2018.04.016. DOI
Högy P., Poll C., Marhan S., Kandeler E., Fangmeier A. Impacts of Temperature Increase and Change in Precipitation Pattern on Crop Yield and Yield Quality of Barley. Food Chem. 2013;136:1470–1477. doi: 10.1016/j.foodchem.2012.09.056. PubMed DOI
Cammarano D., Zierden D., Stefanova L., Asseng S., O’Brien J.J., Jones J.W. Using Historical Climate Observations to Understand Future Climate Change Crop Yield Impacts in the Southeastern US. Clim. Chang. 2016;134:311–326. doi: 10.1007/s10584-015-1497-9. DOI
Cammarano D., Hawes C., Squire G., Holland J., Rivington M., Murgia T., Roggero P.P., Fontana F., Casa R., Ronga D. Rainfall and Temperature Impacts on Barley (Hordeum vulgare L.) Yield and Malting Quality in Scotland. Field Crops Res. 2019;241:107559. doi: 10.1016/j.fcr.2019.107559. DOI
Schierhorn F., Hofmann M., Adrian I., Bobojonov I., Müller D. Spatially Varying Impacts of Climate Change on Wheat and Barley Yields in Kazakhstan. J. Arid Environ. 2020;178:104164. doi: 10.1016/j.jaridenv.2020.104164. DOI
Ishikawa S., Nakashima T., Hare M.C., Kettlewell P.S. A Common Climate–Yield Relationship for Wheat and Barley in Japan and the United Kingdom. Climate. 2024;12:125. doi: 10.3390/cli12080125. DOI
Hakala K., Jauhiainen L., Rajala A.A., Jalli M., Kujala M., Laine A. Different Responses to Weather Events May Change the Cultivation Balance of Spring Barley and Oats in the Future. Field Crops Res. 2020;259:107956. doi: 10.1016/j.fcr.2020.107956. DOI
Trnka M., Dubrovský M., Žalud Z. Climate Change Impacts and Adaptation Strategies in Spring Barley Production in the Czech Republic. Clim. Chang. 2004;64:227–255. doi: 10.1023/B:CLIM.0000024675.39030.96. DOI
Sabitova A., Suleımanova G., Kizildeniz T., Yetik A.K. Modeling Climate Change Scenarios for Spring Barley in Southeast of Almaty in Kazakhstan Using the LINTUL Approach. Black Sea J. Eng. Sci. 2024;7:465–472. doi: 10.34248/bsengineering.1445076. DOI
Addy J.W.G., Ellis R.H., Macdonald A.J., Semenov M.A., Mead A. Investigating the Effects of Inter-Annual Weather Variation (1968–2016) on the Functional Response of Cereal Grain Yield to Applied Nitrogen, Using Data from the Rothamsted Long-Term Experiments. Agric. For. Meteorol. 2020;284:107898. doi: 10.1016/j.agrformet.2019.107898. PubMed DOI PMC
Thai T.H., Bellingrath-Kimura S.D., Hoffmann C., Barkusky D. Effect of Long-Term Fertiliser Regimes and Weather on Spring Barley Yields in Sandy Soil in North-East Germany. Arch. Agron. Soil Sci. 2020;66:1812–1826. doi: 10.1080/03650340.2019.1697436. DOI
Hlisnikovský L., Křížová K., Menšík L., Kunzová E. How Mineral Fertilization and Soil-Climate Conditions Affect Spring Barley Grain Yield and Soil Chemical Properties. Agronomy. 2021;11:1843. doi: 10.3390/agronomy11091843. DOI
Czech Statistical Office Final Harvest Figures—2023. [(accessed on 4 May 2024)]. Available online: https://www.czso.cz/csu/czso/final-harvest-figures-2023.
Jaeger A., Zannini E., Sahin A.W., Arendt E.K. Barley Protein Properties, Extraction and Applications, with a Focus on Brewers’ Spent Grain Protein. Foods. 2021;10:1389. doi: 10.3390/foods10061389. PubMed DOI PMC
Potterton E.M., McCabe T. The Effect of Sowing Date and Nitrogen Rate on the Grain Yield, Grain Quality and Malt Analyses of Spring Malting Barley for Distilling in Ireland. J. Agric. Sci. 2018;156:515–527. doi: 10.1017/S002185961800059X. DOI
Křen J., Klem K., Svobodová I., Míša P., Lukas V. Influence of Sowing, Nitrogen Nutrition and Weather Conditions on Stand Structure and Yield of Spring Barley. Cereal Res. Commun. 2015;43:326–335. doi: 10.1556/CRC.2014.0036. DOI
Lobell D.B., Field C.B. Global Scale Climate-Crop Yield Relationships and the Impacts of Recent Warming. Environ. Res. Lett. 2007;2:014002. doi: 10.1088/1748-9326/2/1/014002. DOI
Xie W., Xiong W., Pan J., Ali T., Cui Q., Guan D., Meng J., Mueller N.D., Lin E., Davis S.J. Decreases in Global Beer Supply Due to Extreme Drought and Heat. Nat. Plants. 2018;4:964–973. doi: 10.1038/s41477-018-0263-1. PubMed DOI
Kim Y.G., Park H.H., Lee H.J., Kim H.K., Kuk Y.I. Growth, Yield, and Grain Quality of Barley (Hordeum vulgare L.) Grown across South Korean Farmlands with Different Temperature Distributions. Agronomy. 2022;12:2731. doi: 10.3390/agronomy12112731. DOI
Achli S., Epule T.E., Dhiba D., Salih W., Chehbouni A. Vulnerability of Maize, Barley, and Wheat Yields to Growing Season Temperature and Socioeconomic Indicators in Morocco. J. Water Clim. Chang. 2024;15:1588–1611. doi: 10.2166/wcc.2024.498. DOI
Olšovská K., Sytar O., Kováčik P. Optimizing Nitrogen Application for Enhanced Barley Resilience: A Comprehensive Study on Drought Stress and Nitrogen Supply for Sustainable Agriculture. Sustainability. 2024;16:2016. doi: 10.3390/su16052016. DOI
Reineke T., Steffens D. Phosphorus Requirement of Barley and Wheat for Seed and Food Quality. Plant Soil Environ. 2022;68:459–465. doi: 10.17221/138/2022-PSE. DOI
Frei J., Wiesenberg G.L.B., Hirte J. The Impact of Climate and Potassium Nutrition on Crop Yields: Insights from a 30-Year Swiss Long-Term Fertilization Experiment. Agric. Ecosyst. Environ. 2024;372:109100. doi: 10.1016/j.agee.2024.109100. DOI
Kozera W., Barczak B., Knapowski T., Spychaj-Fabisiak E., Murawska B. Reaction of Spring Barley to NPK and S Fertilization. Yield, the Content of Macroelements and the Value of Ionic Ratios. Rom. Agric. Res. 2017;34:275–285.
Dostálová Y., Hřivna L., Kotková B., Burešová I., Janečková M., Šottníková V. Effect of Nitrogen and Sulphur Fertilization on the Quality of Barley Protein. Plant Soil Environ. 2015;61:399–404. doi: 10.17221/262/2015-PSE. DOI
Panfilova A., Gamayunova V., Potryvaieva N. The Impact of Nutrition Optimization on Crop Yield and Grain Quality of Spring Barley Varieties (Hordeum vulgare L.) Agraarteadus. 2021;32:111–116. doi: 10.15159/jas.21.18. DOI
Stevens W.B., Sainju U.M., Caesar-TonThat T., Iversen W.M. Malt Barley Yield and Quality Affected by Irrigation, Tillage, Crop Rotation, and Nitrogen Fertilisation. Agron. J. 2015;107:2107–2119. doi: 10.2134/agronj15.0027. DOI
Stadnik B., Tobiasz-Salach R., Migut D. Influence of Foliar Application of Microelements on Yield and Yield Components of Spring Malting Barley. Agriculture. 2024;14:505. doi: 10.3390/agriculture14030505. DOI
Hofer K., Barmeier G., Schmidhalter U., Habler K., Rychlik M., Hückelhoven R., Hess M. Effect of Nitrogen Fertilization on Fusarium Head Blight in Spring Barley. Crop Prot. 2016;88:18–27. doi: 10.1016/j.cropro.2016.05.007. DOI
Krček M., Slamka P., Olšovská K., Brestič M., Benčíková M. Reduction of Drought Stress Effect in Spring Barley (Hordeum vulgare L.) by Nitrogen Fertilization. Plant Soil Environ. 2008;54:7–13. doi: 10.17221/2781-PSE. DOI
O’Donovan J.T., Turkington T.K., Edney M.J., Clayton G.W., McKenzie R.H., Juskiw P.E., Lafond G.P., Grant C.A., Brandt S., Harker K.N., et al. Seeding Rate, Nitrogen Rate, and Cultivar Effects on Malting Barley Production. Agron. J. 2011;103:709–716. doi: 10.2134/agronj2010.0490. DOI
Shrestha R.K., Lindsey L.E. Agronomic Management of Malting Barley and Research Needs to Meet Demand by the Craft Brew Industry. Agron. J. 2019;111:1570–1580. doi: 10.2134/agronj2018.12.0787. DOI
Smoczynska A., Pacak A., Grabowska A., Bielewicz D., Zadworny M., Singh K., Dolata J., Bajczyk M., Nuc P., Kesy J., et al. Excess Nitrogen Responsive HvMADS27 Transcription Factor Controls Barley Root Architecture by Regulating Abscisic Acid Level. Front. Plant Sci. 2022;13:950796. doi: 10.3389/fpls.2022.950796. PubMed DOI PMC
Kong L., Xie Y., Hu L., Si J., Wang Z. Excessive Nitrogen Application Dampens Antioxidant Capacity and Grain Filling in Wheat as Revealed by Metabolic and Physiological Analyses. Sci. Rep. 2017;7:43363. doi: 10.1038/srep43363. PubMed DOI PMC
Tyagi J., Ahmad S., Malik M. Nitrogenous Fertilizers: Impact on Environment Sustainability, Mitigation Strategies, and Challenges. Int. J. Environ. Sci. Technol. 2022;19:11649–11672. doi: 10.1007/s13762-022-04027-9. DOI
Chen J., Lü S., Zhang Z., Zhao X., Li X., Ning P., Liu M. Environmentally Friendly Fertilisers: A Review of Materials Used and Their Effects on the Environment. Sci. Total Environ. 2018;613–614:829–839. doi: 10.1016/j.scitotenv.2017.09.186. PubMed DOI
Singh B. Are Nitrogen Fertilisers Deleterious to Soil Health? Agronomy. 2018;8:48. doi: 10.3390/agronomy8040048. DOI
Balafoutis A., Beck B., Fountas S., Vangeyte J., Van Der Wal T., Soto I., Gómez-Barbero M., Barnes A., Eory V. Precision Agriculture Technologies Positively Contributing to Ghg Emissions Mitigation, Farm Productivity and Economics. Sustainability. 2017;9:1339. doi: 10.3390/su9081339. DOI
Macholdt J., Honermeier B. Yield Stability in Winter Wheat Production: A Survey on German Farmers’ and Advisors’ Views. Agronomy. 2017;7:45. doi: 10.3390/agronomy7030045. DOI
Hlisnikovský L., Ivičic P., Barłóg P., Grzebisz W., Menšík L., Kunzová E. The Effects of Weather and Fertilisation on Grain Yield and Stability of Winter Wheat Growing on Orthic Luvisol—Analysis of Long-Term Field Experiment. Plants. 2022;11:1825. doi: 10.3390/plants11141825. PubMed DOI PMC
Chmielewski F.M., Köhn W. Impact of Weather on Yield Components of Spring Cereals over 30 Years. Agric. For. Meteorol. 1999;96:49–58. doi: 10.1016/S0168-1923(99)00047-7. DOI
Mozny M., Hajkova L., Vlach V., Ouskova V., Musilova A. Changing Climatic Conditions in Czechia Require Adaptation Measures in Agriculture. Climate. 2023;11:210. doi: 10.3390/cli11100210. DOI
Twardosz R., Walanus A., Guzik I. Warming in Europe: Recent Trends in Annual and Seasonal Temperatures. Pure Appl. Geophys. 2021;178:4021–4032. doi: 10.1007/s00024-021-02860-6. DOI
Hemmerle H., Bayer P. Climate Change Yields Groundwater Warming in Bavaria, Germany. Front. Earth Sci. 2020;8:575894. doi: 10.3389/feart.2020.575894. DOI
Sujetoviene G., Velička R., Kanapickas A., Kriaučiuniene Z., Romanovskaja D., Bakšiene E., Vagusevičiene I., Klepeckas M., Juknys R. Climate-Change-Related Long-Term Historical and Projected Changes to Spring Barley Phenological Development in Lithuania. J. Agric. Sci. 2018;156:1061–1069. doi: 10.1017/S0021859618000904. DOI
Daničić M., Zekić V., Mirosavljević M., Lalić B., Putnik-Delić M., Maksimović I., Marta A.D. The Response of Spring Barley (Hordeum vulgare L.) to Climate Change in Northern Serbia. Atmosphere. 2019;10:14. doi: 10.3390/atmos10010014. DOI
Szwed M. Variability of Precipitation in Poland under Climate Change. Theor. Appl. Climatol. 2019;135:1003–1015. doi: 10.1007/s00704-018-2408-6. DOI
Olesen J.E., Trnka M., Kersebaum K.C., Skjelvåg A.O., Seguin B., Peltonen-Sainio P., Rossi F., Kozyra J., Micale F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011;34:96–112. doi: 10.1016/j.eja.2010.11.003. DOI
Zhang K., Yao Y., Qian X., Wang J. Various Characteristics of Precipitation Concentration Index and Its Cause Analysis in China between 1960 and 2016. Int. J. Climatol. 2019;39:4648–4658. doi: 10.1002/joc.6092. DOI
Zamani R., Mirabbasi R., Nazeri M., Meshram S.G., Ahmadi F. Spatio-Temporal Analysis of Daily, Seasonal and Annual Precipitation Concentration in Jharkhand State, India. Stoch. Environ. Res. Risk Assess. 2018;32:1085–1097. doi: 10.1007/s00477-017-1447-3. DOI
Degirmendžić J., Kozuchowski K., Zmudzka E. Changes of Air Temperature and Precipitation in Poland in the Period 1951-2000 and Their Relationship to Atmospheric Circulation. Int. J. Climatol. 2004;24:291–310. doi: 10.1002/joc.1010. DOI
Brázdil R., Zahradníček P., Dobrovolný P., Řehoř J., Trnka M., Lhotka O., Štěpánek P. Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two “Normal” Periods. Atmosphere. 2022;13:137. doi: 10.3390/atmos13010137. DOI
Araya A., Stroosnijder L., Habtu S., Keesstra S.D., Berhe M., Hadgu K.M. Risk Assessment by Sowing Date for Barley (Hordeum vulgare) in Northern Ethiopia. Agric. For. Meteorol. 2012;154–155:30. doi: 10.1016/j.agrformet.2011.11.001. DOI
Araya A., Prasad P.V.V., Gowda P.H., Djanaguiramana M., Gebretsadkan Y. Modeling the Effects of Crop Management on Food Barley Production under a Midcentury Changing Climate in Northern Ethiopia. Clim. Risk Manag. 2021;32:100308. doi: 10.1016/j.crm.2021.100308. DOI
Tarnawa Á., Kende Z., Sghaier A.H., Kovács G.P., Gyuricza C., Khaeim H. Effect of Abiotic Stresses from Drought, Temperature, and Density on Germination and Seedling Growth of Barley (Hordeum vulgare L.) Plants. 2023;12:1792. doi: 10.3390/plants12091792. PubMed DOI PMC
Araya A., Prasad P.V.V., Gowda P.H., Afewerk A., Abadi B., Foster A.J. Modeling Irrigation and Nitrogen Management of Wheat in Northern Ethiopia. Agric. Water Manag. 2019;216:264–272. doi: 10.1016/j.agwat.2019.01.014. DOI
Nishio Z., Uchikawa O., Hideshima Y., Nishioka H., Mihara M., Nakamura K., Matsunaka H., Yamaguchi K. Influence of Precipitations and Sunshine Hours on Yield of Paddy Field Grown Wheat (Triticum Aestivum L.) in Northern Kyushu, Japan. Plant Prod. Sci. 2019;22:479–489. doi: 10.1080/1343943X.2019.1673665. DOI
Trnka M., Hlavinka P., Semerádová D., Dubrovský M., Žalud Z., Možný M. Agricultural Drought and Spring Barley Yields in the Czech Republic. Plant Soil Environ. 2007;53:306–316. doi: 10.17221/2210-PSE. DOI
Yawson D.O., Ball T., Adu M.O., Mohan S., Mulholland B.J., White P.J. Simulated Regional Yields of Spring Barley in the United Kingdom under Projected Climate Change. Climate. 2016;4:54. doi: 10.3390/cli4040054. DOI
Trnka M., Olesen J.E., Kersebaum K.C., Skjelvåg A.O., Eitzinger J., Seguin B., Peltonen-Sainio P., Rötter R., Iglesias A., Orlandini S., et al. Agroclimatic Conditions in Europe under Climate Change. Glob. Chang. Biol. 2011;17:2298–2318. doi: 10.1111/j.1365-2486.2011.02396.x. DOI
Giacometti C., Mazzon M., Cavani L., Triberti L., Baldoni G., Ciavatta C., Marzadori C. Rotation and Fertilization Effects on Soil Quality and Yields in a Long Term Field Experiment. Agronomy. 2021;11:636. doi: 10.3390/agronomy11040636. DOI
Khakbazan M., Mohr R.M., Huang J., Xie R., Volkmar K.M., Tomasiewicz D.J., Moulin A.P., Derksen D.A., Irvine B.R., McLaren D.L., et al. Effects of Crop Rotation on Energy Use Efficiency of Irrigated Potato with Cereals, Canola, and Alfalfa over a 14-Year Period in Manitoba, Canada. Soil Tillage Res. 2019;195:104357. doi: 10.1016/j.still.2019.104357. DOI
Singh A., Afzal T., Woodbury B., Wortmann C., Iqbal J. Alfalfa in Rotation with Annual Crops Reduced Nitrate Leaching Potential. J. Environ. Qual. 2023;52:930–938. doi: 10.1002/jeq2.20473. PubMed DOI
St. Luce M., Grant C.A., Zebarth B.J., Ziadi N., O’Donovan, J.T., Blackshaw R.E., Harker K.N., Johnson E.N., Gan Y., Lafond G.P., et al. Legumes Can Reduce Economic Optimum Nitrogen Rates and Increase Yields in a Wheat-Canola Cropping Sequence in Western Canada. Field Crops Res. 2015;179:12–25. doi: 10.1016/j.fcr.2015.04.003. DOI
Kumar U., Hansen E.M., Eriksen J., Vogeler I., Mäenpää M., Thomsen I.K. Faba Bean and Spring Barley in Sequence with Catch Crops: Grain Yields and Nitrate Leaching. Field Crops Res. 2024;310:109360. doi: 10.1016/j.fcr.2024.109360. DOI
Bogaard A., Fraser R., Heaton T.H.E., Wallace M., Vaiglova P., Charles M., Jones G., Evershed R.P., Styring A.K., Andersen N.H., et al. Crop Manuring and Intensive Land Management by Europe’s First Farmers. Proc. Natl. Acad. Sci. USA. 2013;110:12589–12594. doi: 10.1073/pnas.1305918110. PubMed DOI PMC
Zavattaro L., Bechini L., Grignani C., van Evert F.K., Mallast J., Spiegel H., Sandén T., Pecio A., Giráldez Cervera J.V., Guzmán G., et al. Agronomic Effects of Bovine Manure: A Review of Long-Term European Field Experiments. Eur. J. Agron. 2017;90:127–138. doi: 10.1016/j.eja.2017.07.010. DOI
Liu S., Wang J., Pu S., Blagodatskaya E., Kuzyakov Y., Razavi B.S. Impact of Manure on Soil Biochemical Properties: A Global Synthesis. Sci. Total Environ. 2020;745:141003. doi: 10.1016/j.scitotenv.2020.141003. PubMed DOI
Du Y., Cui B., Zhang Q., Wang Z., Sun J., Niu W. Effects of Manure Fertiliser on Crop Yield and Soil Properties in China: A Meta-Analysis. Catena. 2020;193:104617. doi: 10.1016/j.catena.2020.104617. DOI
Bhogal A., Williams J.R., Nicholson F.A., Chadwick D.R., Chambers K.H., Chambers B.J. Mineralization of Organic Nitrogen from Farm Manure Applications. Soil Use Manag. 2016;32:32–43. doi: 10.1111/sum.12263. DOI
Hlisnikovský L., Menšík L., Kunzová E. The Development of Winter Wheat Yield and Quality under Different Fertilizer Regimes and Soil-Climatic Conditions in the Czech Republic. Agronomy. 2020;10:1160. doi: 10.3390/agronomy10081160. DOI
Maltas A., Kebli H., Oberholzer H.R., Weisskopf P., Sinaj S. The Effects of Organic and Mineral Fertilizers on Carbon Sequestration, Soil Properties, and Crop Yields from a Long-term Field Experiment under a Swiss Conventional Farming System. Land Degrad. Dev. 2018;29:926–938. doi: 10.1002/ldr.2913. DOI
Risberg K., Cederlund H., Pell M., Arthurson V., Schnürer A. Comparative Characterization of Digestate versus Pig Slurry and Cow Manure—Chemical Composition and Effects on Soil Microbial Activity. Waste Manag. 2017;61:529–538. doi: 10.1016/j.wasman.2016.12.016. PubMed DOI
Shen X., Huang G., Yang Z., Han L. Compositional Characteristics and Energy Potential of Chinese Animal Manure by Type and as a Whole. Appl. Energy. 2015;160:108–119. doi: 10.1016/j.apenergy.2015.09.034. DOI
Delogu G., Cattivelli L., Pecchioni N., De Falcis D., Maggiore T., Stanca A. Uptake and Agronomic Efficiency of Nitrogen in Winter Barley and Winter Wheat. Eur. J. Agron. 1998;9:11–20. doi: 10.1016/S1161-0301(98)00019-7. DOI
Sandhu N., Sethi M., Kumar A., Dang D., Singh J., Chhuneja P. Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. Front. Plant Sci. 2021;12:657629. doi: 10.3389/fpls.2021.657629. PubMed DOI PMC
Eghball B., Wienhold B.J., Gilley J.E., Eigenberg R.A. Mineralization of Manure Nutrients. J. Soil Water Conserv. 2002;57:470–473.
Liszewski M., Błażewicz J. No TitleEffect of Nitrogen Fertilization on Grain Yield and Quality of Naked Spring Barley Cultivar. Fragm. Agron. 2016;33:65–75.
Hajighasemi S., Keshavarz-Afshar R., Chaichi M.R. Nitrogen Fertilizer and Seeding Rate Influence on Grain and Forage Yield of Dual-Purpose Barley. Agron. J. 2016;108:1486–1494. doi: 10.2134/agronj2015.0447. DOI
Cammarano D., Basso B., Holland J., Gianinetti A., Baronchelli M., Ronga D. Modeling Spatial and Temporal Optimal N Fertilizer Rates to Reduce Nitrate Leaching While Improving Grain Yield and Quality in Malting Barley. Comput. Electron. Agric. 2021;182:105997. doi: 10.1016/j.compag.2021.105997. DOI
Creissen H.E., Jorgensen T.H., Brown J.K.M. Increased Yield Stability of Field-Grown Winter Barley (Hordeum vulgare L.) Varietal Mixtures through Ecological Processes. Crop Prot. 2016;85:1–8. doi: 10.1016/j.cropro.2016.03.001. PubMed DOI PMC
Macholdt J., Styczen M.E., Macdonald A., Piepho H.P., Honermeier B. Long-Term Analysis from a Cropping System Perspective: Yield Stability, Environmental Adaptability, and Production Risk of Winter Barley. Eur. J. Agron. 2020;117:126056. doi: 10.1016/j.eja.2020.126056. DOI
Macholdt J., Hadasch S., Piepho H.P., Reckling M., Taghizadeh-Toosi A., Christensen B.T. Yield Variability Trends of Winter Wheat and Spring Barley Grown during 1932–2019 in the Askov Long-Term Experiment. Field Crops Res. 2021;264:108083. doi: 10.1016/j.fcr.2021.108083. DOI
Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC
Schad P. The International Soil Classification System WRB, Third Edition, 2014. Springer; Berlin/Heidelberg, Germany: 2016. pp. 563–571. Springer Water.
Mann H.B. Nonparametric Tests Against Trend. Econometrica. 1945;13:245. doi: 10.2307/1907187. DOI
Kendall M.G. Rank Correlation Methods. 4th ed. Griffin; London, UK: 1975.
Sen P.K. Journal of the American Statistical Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968;63:1379–1389. doi: 10.1080/01621459.1968.10480934. DOI
Jaiswal R.K., Lohani A.K., Tiwari H.L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environ. Process. 2015;2:729–749. doi: 10.1007/s40710-015-0105-3. DOI
Oliver J.E. Monthly Precipitation Distribution: A Comparative Index. Prof. Geogr. 1980;32:300–309. doi: 10.1111/j.0033-0124.1980.00300.x. DOI
Anderson T.W., Darling D.A. A Test of Goodness of Fit. J. Am. Stat. Assoc. 1954;49:765–769. doi: 10.1080/01621459.1954.10501232. DOI
Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591. doi: 10.1093/biomet/52.3-4.591. DOI
Kruskal W.H., Wallis W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952;47:583. doi: 10.1080/01621459.1952.10483441. DOI
Conover W., Iman R. Multiple-Comparisons Procedures. Informal Report. Los Alamos, NM, USA: 1979. DOI
Kang M.S. A Rank-Sum Method for Selecting High-Yielding, Stable Corn Genotypes. Cereal Res. Commun. 1988;16:113–115.
Pour-Aboughadareh A., Yousefian M., Moradkhani H., Poczai P., Siddique K.H.M. STABILITYSOFT: A New Online Program to Calculate Parametric and Non-Parametric Stability Statistics for Crop Traits. Appl. Plant Sci. 2019;7:e01211. doi: 10.1002/aps3.1211. PubMed DOI PMC