Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
26649052
PubMed Central
PMC4655073
DOI
10.1155/2016/8582526
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen-/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profile in vitro, related but not identical to true pluripotent stem cells. Under ES-cell conditions haGSC colonies could be selected and maintained in a partial pluripotent state at the molecular level, which may be related to their cell plasticity and potential to differentiate into cells of all germ layers.
Department of Urology University of Tübingen Hospital Hoppe Seyler Straße 3 72076 Tübingen Germany
See more in PubMed
Conrad S., Azizi H., Hatami M., et al. Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture. BioMed Research International. 2014;2014:17. doi: 10.1155/2014/138350.138350 PubMed DOI PMC
Skutella T., Conrad S. Generation of germline derived stem cells from adult human testis. In: Steinhoff G., editor. Regenerative Medicine. Berlin, Germany: Spinger; 2011. pp. 207–224.
Kossack N., Meneses J., Shefi S., et al. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells. 2009;27(1):138–149. doi: 10.1634/stemcells.2008-0439. PubMed DOI PMC
Golestaneh N., Kokkinaki M., Pant D., et al. Pluripotent stem cells derived from adult human testes. Stem Cells and Development. 2009;18(8):1115–1126. doi: 10.1089/scd.2008.0347. PubMed DOI PMC
Mizrak S. C., Chikhovskaya J. V., Sadri-Ardekani H., et al. Embryonic stem cell-like cells derived from adult human testis. Human Reproduction. 2010;25(1):158–167. doi: 10.1093/humrep/dep354. PubMed DOI
Lim J. J., Kim H. J., Kim K.-S., Hong J. Y., Lee D. R. In vitro culture-induced pluripotency of human spermatogonial stem cells. BioMed Research International. 2013;2013:9. doi: 10.1155/2013/143028.143028 PubMed DOI PMC
Chikhovskaya J. V., Jonker M. J., Meissner A., Breit T. M., Repping S., van Pelt A. M. M. Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Human Reproduction. 2012;27(1):210–221. doi: 10.1093/humrep/der383. PubMed DOI
Gonzalez R., Griparic L., Vargas V., et al. A putative mesenchymal stem cells population isolated from adult human testes. Biochemical and Biophysical Research Communications. 2009;385(4):570–575. doi: 10.1016/j.bbrc.2009.05.103. PubMed DOI
Ko K., Araúzo-Bravo M. J., Tapia N., et al. Human adult germline stem cells in question. Nature. 2010;465(7301):E1–E3. doi: 10.1038/nature09089. PubMed DOI
Stimpfel M., Skutella T., Kubista M., Malicev E., Conrad S., Virant-Klun I. Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. Journal of Biomedicine and Biotechnology. 2012;2012:15. doi: 10.1155/2012/291038.291038 PubMed DOI PMC
Boyer L. A., Tong I. L., Cole M. F., et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–956. doi: 10.1016/j.cell.2005.08.020. PubMed DOI PMC
Choi W. Y., Jeon H. G., Chung Y., et al. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells and Development. 2013;22(15):2158–2173. doi: 10.1089/scd.2012.0385. PubMed DOI PMC
Muller F. J., Schuldt B. M., Williams R., et al. A bioinformatic assay for pluripotency in human cells. Nature Methods. 2011;8(4):315–317. PubMed PMC
Assou S., Le Carrour T., Tondeur S., et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells. 2007;25(4):961–973. doi: 10.1634/stemcells.2006-0352. PubMed DOI PMC
Kanatsu-Shinohara M., Takashima S., Ishii K., Shinohara T. Dynamic changes in EPCAM expression during spermatogonial stem cell differentiation in the mouse testis. PLoS ONE. 2011;6(8) doi: 10.1371/journal.pone.0023663.e23663 PubMed DOI PMC
Ng V. Y., Ang S. N., Chan J. X., Choo A. B. H. Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells. 2010;28(1):29–35. doi: 10.1002/stem.221. PubMed DOI
Huang H.-P., Chen P.-H., Yu C.-Y., et al. Epithelial cell adhesion molecule (EpCAM) complex proteins promote transcription factor-mediated pluripotency reprogramming. The Journal of Biological Chemistry. 2011;286(38):33520–33532. doi: 10.1074/jbc.m111.256164. PubMed DOI PMC
Chuang C.-Y., Lin K.-I., Hsiao M., et al. Meiotic competent human germ cell-like cells derived from human embryonic stem cells induced by BMP4/WNT3A signaling and OCT4/EpCAM (epithelial cell adhesion molecule) selection. The Journal of Biological Chemistry. 2012;287(18):14389–14401. doi: 10.1074/jbc.m111.338434. PubMed DOI PMC
Wong R. C.-B., Ibrahim A., Fong H., Thompson N., Lock L. F., Donovan P. J. L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS ONE. 2011;6(4) doi: 10.1371/journal.pone.0019355.e19355 PubMed DOI PMC
Närvä E., Rahkonen N., Emani M. R., et al. RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells. 2012;30(3):452–460. doi: 10.1002/stem.1013. PubMed DOI PMC
Yang J., Corsello T. R., Ma Y. Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. The Journal of Biological Chemistry. 2012;287(3):1996–2005. doi: 10.1074/jbc.m111.308734. PubMed DOI PMC
Shen X., Kim W., Fujiwara Y., et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell. 2009;139(7):1303–1314. doi: 10.1016/j.cell.2009.12.003. PubMed DOI PMC
Luzzani C., Solari C., Losino N., et al. Modulation of chromatin modifying factors' gene expression in embryonic and induced pluripotent stem cells. Biochemical and Biophysical Research Communications. 2011;410(4):816–822. doi: 10.1016/j.bbrc.2011.06.070. PubMed DOI
Zhang Z., Jones A., Sun C.-W., et al. PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprograming. Stem Cells. 2011;29(2):229–240. doi: 10.1002/stem.578. PubMed DOI PMC
Yanagisawa Y., Ito E., Yuasa Y., Maruyama K. The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochimica et Biophysica Acta—Gene Structure and Expression. 2002;1577(3):457–465. doi: 10.1016/s0167-4781(02)00482-7. PubMed DOI
Galetzka D., Weis E., Tralau T., Seidmann L., Haaf T. Sex-specific windows for high mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4 in human fetal gonads. Molecular Reproduction and Development. 2007;74(2):233–241. doi: 10.1002/mrd.20615. PubMed DOI
Mendoza-Lujambio I., Burfeind P., Dixkens C., et al. The Hook1 gene is non-functional in the abnormal spermatozoon head shape (azh) mutant mouse. Human Molecular Genetics. 2002;11(14):1647–1658. doi: 10.1093/hmg/11.14.1647. PubMed DOI
Wang L., Schulz T. C., Sherrer E. S., et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood. 2007;110(12):4111–4119. doi: 10.1182/blood-2007-03-082586. PubMed DOI PMC
Kaeser M. D., Aslanian A., Dong M.-Q., Yates J. R., III, Emerson B. M. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. The Journal of Biological Chemistry. 2008;283(47):32254–32263. doi: 10.1074/jbc.m806061200. PubMed DOI PMC
Rezende N. C., Lee M.-Y., Monette S., Mark W., Lu A., Gudas L. J. Rex1 (Zfp42) null mice show impaired testicular function, abnormal testis morphology, and aberrant gene expression. Developmental Biology. 2011;356(2):370–382. doi: 10.1016/j.ydbio.2011.05.664. PubMed DOI PMC
Brandenberger R., Wei H., Zhang S., et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature Biotechnology. 2004;22(6):707–716. doi: 10.1038/nbt971. PubMed DOI
Hobbs R. M., Fagoonee S., Papa A., et al. Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell. 2012;10(3):284–298. doi: 10.1016/j.stem.2012.02.004. PubMed DOI PMC
Pasini D., Malatesta M., Jung H. R., et al. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Research. 2010;38(15):4958–4969. doi: 10.1093/nar/gkq244. PubMed DOI PMC
Kuo C.-H., Deng J. H., Deng Q., Ying S.-Y. A novel role of miR-302/367 in reprogramming. Biochemical and Biophysical Research Communications. 2012;417(1):11–16. doi: 10.1016/j.bbrc.2011.11.058. PubMed DOI