Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load

. 2016 Jan ; 412 (1-2) : 147-54. [epub] 20151229

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26715132
Odkazy

PubMed 26715132
DOI 10.1007/s11010-015-2619-4
PII: 10.1007/s11010-015-2619-4
Knihovny.cz E-zdroje

Most of the experimental studies have revealed that female heart is more tolerant to ischemia/reperfusion (I/R) injury as compared with the male myocardium. It is widely accepted that mitochondrial dysfunction, and particularly mitochondrial permeability transition pore (MPTP) opening, plays a major role in determining the extent of cardiac I/R injury. The aim of the present study was, therefore, to analyze (i) whether calcium-induced swelling of cardiac mitochondria is sex-dependent and related to the degree of cardiac tolerance to I/R injury and (ii) whether changes in MPTP components-cyclophilin D (CypD) and ATP synthase-can be involved in this process. We have observed that in mitochondria isolated from rat male and female hearts the MPTP has different sensitivity to the calcium load. Female mitochondria are more resistant both in the extent and in the rate of the mitochondrial swelling at higher calcium concentration (200 µM). At low calcium concentration (50 µM) no differences were observed. Our data further suggest that sex-dependent specificity of the MPTP is not the result of different amounts of ATP synthase and CypD, or their respective ratio in mitochondria isolated from male and female hearts. Our results indicate that male and female rat hearts contain comparable content of MPTP and its regulatory protein CypD; parallel immunodetection revealed also the same contents of adenine nucleotide translocator or voltage-dependent anion channel. Increased resistance of female heart mitochondria thus cannot be explained by changes in putative components of MPTP, and rather reflects regulation of MPTP function.

Zobrazit více v PubMed

Life Sci. 2005 Apr 22;76(23):2735-49 PubMed

J Biol Chem. 2014 Jun 6;289(23):15980-5 PubMed

Physiol Res. 2009;58 Suppl 2:S1-12 PubMed

Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):726-31 PubMed

Biochem Soc Trans. 2010 Aug;38(4):841-60 PubMed

J Mol Cell Cardiol. 2015 Jan;78:129-41 PubMed

Nat Cell Biol. 2007 May;9(5):550-5 PubMed

Anal Biochem. 2003 Feb 1;313(1):46-52 PubMed

Oncogene. 2015 Mar 19;34(12):1475-86 PubMed

FEBS Lett. 1978 Dec 15;96(2):373-6 PubMed

Biochim Biophys Acta. 2015 Oct;1850(10 ):2041-7 PubMed

Gen Comp Endocrinol. 2015 Jan 15;211:131-46 PubMed

Biochim Biophys Acta. 1999 Jan 6;1453(1):49-62 PubMed

Cell Calcium. 2015 Jul;58(1):18-26 PubMed

Heart Fail Rev. 2007 Dec;12(3-4):293-300 PubMed

Can J Physiol Pharmacol. 2012 Sep;90(9):1151-9 PubMed

J Cell Sci. 2010 Mar 15;123(Pt 6):894-902 PubMed

Nutr Metab Cardiovasc Dis. 2010 Jul;20(6):467-73 PubMed

J Biol Chem. 2002 Sep 20;277(38):34793-9 PubMed

Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2191-7 PubMed

Atherosclerosis. 2009 Jun;204(2):334-41 PubMed

Anal Biochem. 1987 Nov 1;166(2):368-79 PubMed

Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5887-92 PubMed

Mt Sinai J Med. 2003 Oct;70(5):293-305 PubMed

J Biol Chem. 2009 Dec 4;284(49):33982-8 PubMed

N Engl J Med. 2008 Jul 31;359(5):473-81 PubMed

PLoS One. 2012;7(6):e38425 PubMed

Cardiovasc Res. 2007 Jun 1;74(3):456-65 PubMed

J Mol Cell Cardiol. 2015 Jan;78:100-6 PubMed

Cell Cycle. 2013 Feb 15;12(4):674-83 PubMed

Nature. 2004 Jan 29;427(6973):461-5 PubMed

Mitochondrion. 2011 Sep;11(5):722-8 PubMed

J Mol Cell Cardiol. 2015 Jan;78:35-45 PubMed

J Mol Cell Cardiol. 2004 Aug;37(2):507-13 PubMed

Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10580-5 PubMed

Aging (Albany NY). 2010 Dec;2(12):914-23 PubMed

J Mol Cell Cardiol. 2015 Jan;78:80-9 PubMed

Front Physiol. 2013 May 10;4:95 PubMed

Cardiovasc Res. 2007 Aug 1;75(3):478-86 PubMed

Physiol Bohemoslov. 1984;33(2):129-38 PubMed

Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2644-47 PubMed

Nature. 2005 Mar 31;434(7033):658-62 PubMed

Physiol Res. 2012;61 Suppl 1:S165-72 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

J Biol Chem. 2011 Nov 18;286(46):40184-92 PubMed

Mol Cell Biochem. 2010 Feb;335(1-2):147-53 PubMed

Br J Pharmacol. 2014 Feb;171(3):541-54 PubMed

Arch Biochem Biophys. 2009 Nov;491(1-2):39-45 PubMed

Mol Cell Biochem. 1997 Sep;174(1-2):167-72 PubMed

J Bioenerg Biomembr. 2012 Jun;44(3):309-15 PubMed

PLoS One. 2015 Jan 23;10(1):e0117047 PubMed

J Mol Cell Cardiol. 1993 Dec;25(12):1461-9 PubMed

Arch Biochem Biophys. 1998 Jun 1;354(1):151-7 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sex Differences in Cardiac Tolerance to Oxygen Deprivation - 40 Years of Cardiovascular Research

. 2024 Nov 29 ; 73 (S2) : S511-S525.

Nitric oxide is involved in the cardioprotection of neonatal rat hearts, but not in neonatal ischemic postconditioning

. 2024 Aug ; 12 (15) : e16147.

Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences

. 2024 Apr 18 ; 73 (Suppl 1) : S35-S48. [epub] 20240418

The Mitochondrial Permeability Transition Pore-Current Knowledge of Its Structure, Function, and Regulation, and Optimized Methods for Evaluating Its Functional State

. 2023 Apr 27 ; 12 (9) : . [epub] 20230427

Short term methylphenidate treatment does not increase myocardial injury in the ischemic rat heart

. 2020 Nov 16 ; 69 (5) : 803-812. [epub] 20200529

Factors affecting the function of the mitochondrial membrane permeability transition pore and their role in evaluation of calcium retention capacity values

. 2020 Jul 16 ; 69 (3) : 491-499. [epub] 20200529

Possible role of mitochondrial K-ATP channel and nitric oxide in protection of the neonatal rat heart

. 2019 Jan ; 450 (1-2) : 35-42. [epub] 20180525

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...