Factors affecting the function of the mitochondrial membrane permeability transition pore and their role in evaluation of calcium retention capacity values
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články
PubMed
32469235
PubMed Central
PMC8648306
DOI
10.33549/physiolres.934391
PII: 934391
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- jaterní mitochondrie metabolismus MeSH
- játra metabolismus MeSH
- krysa rodu Rattus MeSH
- mitochondriální membrány metabolismus MeSH
- permeabilita MeSH
- přechodový pór mitochondriální permeability metabolismus MeSH
- transportní proteiny mitochondriální membrány metabolismus MeSH
- vápník metabolismus MeSH
- výzkumný projekt MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- přechodový pór mitochondriální permeability MeSH
- transportní proteiny mitochondriální membrány MeSH
- vápník MeSH
Values of the calcium retention capacity (CRC) of rat liver mitochondria are highly dependent on the experimental conditions used. When increasing amounts of added calcium chloride are used (1.25-10 nmol), the values of the CRC increase 3-fold. When calcium is added in 75 s intervals, the CRC values increase by 30 % compared with 150 s interval additions. CRC values are not dependent on the calcium/protein ratio in the measured sample in our experimental design. We also show that a more detailed evaluation of the fluorescence curves can provide new information about mitochondrial permeability transition pore opening after calcium is added.
Zobrazit více v PubMed
ALAVIAN KN, BEUTNER G, LAZROVE E, SACCHETTI S, PARK HA, LICZNERSKI P, LI H, NABILI P, HOCKENSMITH K, GRAHAM M, PORTER GA, JR, JONAS EA. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A. 2014;111:10580–10585. doi: 10.1073/pnas.1401591111. PubMed DOI PMC
BERNARDI P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol. 2013;4:95. doi: 10.3389/fphys.2013.00095. PubMed DOI PMC
BIASUTTO L, AZZOLINI M, SZABO I, ZORATTI M. The mitochondrial permeability transition pore in AD 2016: An update. Biochim Biophys Acta. 18632016:2515–2530. doi: 10.1016/j.bbamcr.2016.02.012. PubMed DOI
BIASUTTO L, DONG LF, ZORATTI M, NEUZIL J. Mitochondrially targeted anti-cancer agents. Mitochondrion. 2010;10:670–681. doi: 10.1016/j.mito.2010.06.004. PubMed DOI
BONORA M, PINTON P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol. 2014;4:302. doi: 10.3389/fonc.2014.00302. PubMed DOI PMC
BRADFORD MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
BUSTAMANTE E, SOPER JW, PEDERSEN PL. A high-yield preparative method for isolation of rat liver mitochondria. Anal Biochem. 1977;80:401–408. doi: 10.1016/0003-2697(77)90661-3. PubMed DOI
CARAFOLI E, SANTELLA L, BRANCA D, BRINI M. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 2001;36:107–260. doi: 10.1080/20014091074183. PubMed DOI
De STEFANI D, RIZZUTO R, POZZAN T. Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem. 2016;85:161–192. doi: 10.1146/annurev-biochem-060614-034216. PubMed DOI
Di LISA F, BERNARDI P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res. 2006;70:191–199. doi: 10.1016/j.cardiores.2006.01.016. PubMed DOI
DRAHOTA Z, ENDLICHER R, STANKOVA P, RYCHTRMOC D, MILEROVA M, CERVINKOVA Z. Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves. J Bioenerg Biomembr. 2012a;44:309–315. doi: 10.1007/s10863-012-9443-2. PubMed DOI
DRAHOTA Z, MILEROVÁ M, ENDLICHER R, RYCHTRMOC D, ČERVINKOVÁ Z, OŠŤÁDAL B. Developmental changes of the sensitivity of cardiac and liver mitochondrial permeability transition pore to calcium load and oxidative stress. Physiol Res. 2012b;61(Suppl 1):S165–S172. PubMed
EINER C, HOHENESTER S, WIMMER R, WOTTKE L, ARTMANN R, SCHULZ S, GOSMANN C, SIMMONS A, LEITZINGER C, EBERHAGEN C, BORCHARD S, SCHMITT S, HAUCK SM, Von TOERNE C, JASTROCH M, WALHEIM E, RUST C, GERBES AL, POPPER B, MAYR D, SCHNURR M, VOLLMAR AM, DENK G, ZISCHKA H. Mitochondrial adaptation in steatotic mice. Mitochondrion. 2018;40:1–12. doi: 10.1016/j.mito.2017.08.015. PubMed DOI
ENDLICHER R, DRAHOTA Z, CERVINKOVA Z. Modification of calcium retention capacity of rat liver mitochondria by phosphate and tert-butyl hydroperoxide. Physiol Res. 2019;68:59–65. doi: 10.33549/physiolres.933912. PubMed DOI
ENDLICHER R, KRIVAKOVA P, LOTKOVA H, MILEROVA M, DRAHOTA Z, CERVINKOVA Z. Tissue specific sensitivity of mitochondrial permeability transition pore to Ca2+ ions. Acta Medica (Hradec Kralove) 2009;52:69–72. doi: 10.14712/18059694.2016.107. PubMed DOI
FONTAINE E, ERIKSSON O, ICHAS F, BERNARDI P. Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex I. J Biol Chem. 1998a;273:12662–12668. doi: 10.1074/jbc.273.20.12662. PubMed DOI
FONTAINE E, ICHAS F, BERNARDI P. A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J Biol Chem. 1998b;273:25734–25740. doi: 10.1074/jbc.273.40.25734. PubMed DOI
HALESTRAP AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 2009;46:821–831. doi: 10.1016/j.yjmcc.2009.02.021. PubMed DOI
HALESTRAP AP, CONNERN CP, GRIFFITHS EJ, KERR PM. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem. 1997;174:167–172. doi: 10.1007/978-1-4615-6111-8_25. PubMed DOI
HE J, FORD HC, CARROLL J, DING S, FEARNLEY IM, WALKER JE. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci U S A. 2017;114:3409–3414. doi: 10.1073/pnas.1702357114. PubMed DOI PMC
ICHAS F, JOUAVILLE LS, MAZAT JP. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997;89:1145–1153. doi: 10.1016/s0092-8674(00)80301-3. PubMed DOI
JUHASZOVA M, WANG S, ZOROV DB, NUSS HB, GLEICHMANN M, MATTSON MP, SOLLOTT SJ. The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown. Ann N Y Acad Sci. 2008;1123:197–212. doi: 10.1196/annals.1420.023. PubMed DOI
MILEROVÁ M, DRAHOTA Z, CHYTILOVÁ A, TAUCHMANNOVÁ K, HOUŠTĚK J, OŠŤÁDAL B. Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem. 2016;412:147–154. doi: 10.1007/s11010-015-2619-4. PubMed DOI
NICHOLLS DG. Brain mitochondrial calcium transport: Origins of the set-point concept and its application to physiology and pathology. Neurochem Int. 2017;109:5–12. doi: 10.1016/j.neuint.2016.12.018. PubMed DOI
PANOV A, DIKALOV S, SHALBUYEVA N, HEMENDINGER R, GREENAMYRE JT, ROSENFELD J. Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol. 2007;292:C708–C718. doi: 10.1152/ajpcell.00202.2006. PubMed DOI
PARDO AC, RINALDI GJ, MOSCA SM. Mitochondrial calcium handling in normotensive and spontaneously hypertensive rats: correlation with systolic blood pressure levels. Mitochondrion. 2015;20:75–81. doi: 10.1016/j.mito.2014.12.003. PubMed DOI
RAAFLAUB J. Die schwellung isolierter leberzellmitochondrien und ihre physikalisch-chemische beeinflussbarkeit. Helv Physiol Pharmacol Acta. 1953;11:142–156. PubMed
RAO VK, CARLSON EA, YAN SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta. 18422014:1267–1272. doi: 10.1016/j.bbadis.2013.09.003. PubMed DOI PMC
SKRHA J, JR, GALL J, BUCHAL R, SEDLACKOVA E, PLATENIK J. Glucose and its metabolites have distinct effects on the calcium-induced mitochondrial permeability transition. Folia Biol (Praha) 2011;57:96–103. PubMed
SMITH RAJ, HARTLEY RC, COCHEME HM, MURPHY MP. Mitochondrial pharmacology. Trends Pharmacol Sci. 2012;33:341–352. doi: 10.1016/j.tips.2012.03.010. PubMed DOI
SZABO I, ZORATTI M. Mitochondrial channels: ion fluxes and more. Physiol Rev. 2014;94:519–608. doi: 10.1152/physrev.00021.2013. PubMed DOI
WEISS JN, KORGE P, HONDA HM, PING P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003;93:292–301. doi: 10.1161/01.RES.0000087542.26971.D4. PubMed DOI
Sex Differences in Cardiac Tolerance to Oxygen Deprivation - 40 Years of Cardiovascular Research