Insight into the Salivary Gland Transcriptome of Lygus lineolaris (Palisot de Beauvois)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26789269
PubMed Central
PMC4720363
DOI
10.1371/journal.pone.0147197
PII: PONE-D-15-38173
Knihovny.cz E-zdroje
- MeSH
- anotace sekvence MeSH
- genová ontologie MeSH
- Heteroptera genetika růst a vývoj metabolismus MeSH
- hmyzí geny genetika MeSH
- slinné žlázy metabolismus MeSH
- stanovení celkové genové exprese * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) is a polyphagous, phytophagous insect that has emerged as a major pest of cotton, alfalfa, fruits, and vegetable crops in the eastern United States and Canada. Using its piercing-sucking mouthparts, TPB employs a "lacerate and flush" feeding strategy in which saliva injected into plant tissue degrades cell wall components and lyses cells whose contents are subsequently imbibed by the TPB. It is known that a major component of TPB saliva is the polygalacturonase enzymes that degrade the pectin in the cell walls. However, not much is known about the other components of the saliva of this important pest. In this study, we explored the salivary gland transcriptome of TPB using Illumina sequencing. After in silico conversion of RNA sequences into corresponding polypeptides, 25,767 putative proteins were discovered. Of these, 19,540 (78.83%) showed significant similarity to known proteins in the either the NCBI nr or Uniprot databases. Gene ontology (GO) terms were assigned to 7,512 proteins, and 791 proteins in the sialotranscriptome of TPB were found to collectively map to 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways. A total of 3,653 Pfam domains were identified in 10,421 sialotranscriptome predicted proteins resulting in 12,814 Pfam annotations; some proteins had more than one Pfam domain. Functional annotation revealed a number of salivary gland proteins that potentially facilitate degradation of host plant tissues and mitigation of the host plant defense response. These transcripts/proteins and their potential roles in TPB establishment are described.
Zobrazit více v PubMed
Ribeiro JM (1987) Role of saliva in blood-feeding by arthropods. Annu Rev Entomol l 32: 463–478. PubMed
Ribeiro JMC (1995) Insect Saliva: Function, Biochemistry, and Physiology In: Chapman RF, de Boer G, editors. Regulatory mechanisms in insect feeding: Springer US; pp. 74–97.
Wheeler AG (2001) Biology of the plant bugs (Hemiptera: Miridae): pests, predators, opportunists Ithaca, New York: Cornell University Press.
Alfano JR (2009) Roadmap for future research on plant pathogen effectors. Mol Plant Pathol. 10: 805–813. 10.1111/j.1364-3703.2009.00588.x PubMed DOI PMC
DeLay B, Mamidala P, Wijeratne A, Wijeratne S, Mittapalli O, Wang J, et al. (2012) Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae. J Insect Physiol 58: 1626–1634. 10.1016/j.jinsphys.2012.10.002 PubMed DOI
Eichenseer H, Mathews MC, Bi JL, Murphy JB, Felton GW (1999) Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Arch Insect Biochem Physiol 42: 99–109. PubMed
Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant–insect interactions. Curr Opin Plant Biol 14: 422–428. 10.1016/j.pbi.2011.05.003 PubMed DOI
Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interac 22: 115–122. PubMed
Hori K (1992) Insects secretion and their effect on plant growth, with special reference to hemipterans Biology of Insect-Induced Galls. New York, NY: Oxford University Press; pp. 157–170.
De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ 32: 1548–1560. 10.1111/j.1365-3040.2009.02019.x PubMed DOI
Miles PW (1999) Aphid saliva. Biol Rev 74: 41–85.
Young OP (1986) Host plants of the tarnished plant bug, Lygus lineolaris (Heteroptera: Miridae). Ann Entomol Soc Am 79: 747–762.
Snodgrass GL, Scott WP, Smith JW (1984) Host plants and seasonal distribution of the tarnished plant bug (Hemiptera: Miridae) in the delta of Arkansas, Louisiana, and Mississippi Environ Entomol 13: 110–116.
Strong FE (1970) Physiology of injury caused by Lygus hesperus. J Econ Entomol63: 808–814.
Hanny BW, Cleveland TC, Meredith WR (1977) Effects of tarnished plant bug, (Lygus lineolaris), infestation on presquaring cotton (Gossypium hirsutum) Environ Entomol 6: 460–462.
Layton MB (2000) Biology and damage of the tarnished plant bug, Lygus lineolaris, in Cotton. Southwest Entomol 23: 7–20.
Williams L, Phillips JR, Tugwell NP (1987) Field technique for identifying causes of pinhead square shed in cotton. J Econ Entomol 80: 527–531.
Williams L 3rd, Tugwell NP (2000) Histological description of tranished plant bug (Heteroptera: Miridae) feeding on small cotton floral buds. J Entomol Sci 35: 187–195.
Snodgrass GL (1996) Insecticide resistance in field populations of the tarnished plant bug (Heteroptera: Miridae) in cotton in the Mississippi delta. J Econ Entomol 83: 783–790. PubMed
Snodgrass GL, Abel C, Jackson R, Gore J (2008) Bioassay for determining resistance levels in tarnished plant bug populations to neonicotinoid insecticides. Southwest Entomol 33: 173–180.
Snodgrass GL, Gore J, Abel CA, Jackson R (2009) Acephate resistance in populations of the tarnished plant bug (Heteroptera: Miridae) from the Mississippi river delta. J Econ Entomol 102: 699–707. PubMed
Snodgrass GL, Scott WP (2000) Seasonal changes in pyrethroid resistance in tarnished plant bug (Heteroptera: Miridae) populations during a three-year period in the delta area of Arkansas, Louisiana, and Mississippi. J Econ Entomol 93: 441–446. PubMed
Snodgrass GL, Scott WP (2003) Effect of ULV Malathion use in boll weevil (Coleoptera: Curculionidae) eradication on resistance in the tarnished plant bug (Heteroptera: Miridae). J Econ Entomol 96: 902–908. PubMed
Snodgrass GL (2003) Role of reproductive diapause in the adaption of the tarnished plant bug (Heteroptera: Miridae) to its winter habitat in the Mississippi river delta. Environ Entomol 32: 945–952.
Gore J, Catchot A, Musser F, Greene J, Leonard BR, Cook DR, et al. (2012) Development of a plant-based threshold for tarnished plant bug (Hemiptera: Miridae) in cotton. J Econ Entomol 105: 2007–2014. PubMed
Musser FR, Catchot AL, Stewart SD, Bagwell RD, Lorenz GM, Tindall KV, et al. (2009) Tarnished plant bug (Hemiptera: Miridae) thresholds and sampling comparisons for flowering cotton in the midsouthern United States. J Econ Entomol 102: 1827–1836. PubMed
Musser FR, Lorenz GM, Stewart SD, Bagwell RD, Leonard BR, Catchot AL, et al. (2009) Tarnished plant bug (Hemiptera: Miridae) thresholds for cotton before bloom in the midsouth of the United States. J Econ Entomol 102: 2109–2115. PubMed
Bourland F, Myers GO (2015) Conventional Cotton Breeding. In: Fang DD, Percy RG, editors, Cotton. 2nd Edition, Madison, WI, USA pp. 205.
Bourland FM, Jones DC (2013) Registration of ‘UA103’ Cotton Cultivar. J Plant Registr 7: 135–139.
Bourland FM, Jones DC (2015) Registration of Arkot 0305, Arkot 0306, Arkot 0309, and Arkot 0316 germplasm lines of cotton. J Plant Registr 9:94–98.
Bourland FM, Tugwell NP (1999) Evaluation of injury by tarnished plant bugs (Lygus lineolaris Palisot de Beauvois) to blended cotton genotypes. J Cotton Sci 3: 171–176.
Maredia KM, Tugwell NP, Waddle BA, Bourland FM (1994) Technique for screening cotton germplasm for resistance to tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). Southwest Entomol 19: 63–70.
de la Paz Celorio-Mancera M, Carl Greve L, Teuber LR, Labavitch JM (2009) Identification of endo- and exo-polygalacturonase activity in Lygus hesperus (Knight) salivary glands. Arch Insect Biochem Physiol 70:122–135. 10.1002/arch.20282 PubMed DOI
Shackel KA, de la Paz Celorio-Mancera M, Ahmadi H, Greve LC, Teuber LR, Backus EA, et al. (2005) Micro-injection of Lygus salivary gland proteins to simulate feeding damage in alfalfa and cotton flowers. Arch Insect Biochem Physiol 58: 69–83. PubMed
de la Paz Celorio-Mancera M, Allen M, Powell A, Ahmadi H, Salemi M, Phinney B, et al. (2008) Polygalacturonase causes lygus-like damage on plants: cloning and identification of western tarnished plant bug (Lygus hesperus) polygalacturonases secreted during feeding. Arthropod Plant Interact 2: 215–225.
Allen ML, Mertens JA (2008) Molecular cloning and expression of three polygalacturonase cDNAs from the tarnished plant bug, Lygus lineolaris. J Insect Sci 8: 1–14. PubMed PMC
Walker WB, Allen ML (2010) Expression and RNA interference of salivary polygalacturonase genes in the tarnished plant bug, Lygus lineolaris. J Insect Sci 10. PubMed PMC
Francischetti IMB, Pham VM, Mans BJ, Andersen JF, Mather TN, Lane RS, et al. (2005) The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Bochem Mol Biol 35: 1142–1161. PubMed PMC
Valenzuela JG, Francischetti IMB, Pham VM, Garfield MK, Mather TN, Ribeiro JMC (2002) Exploring the sialome of the tick Ixodes scapularis. J Exp Biol 205: 2843–2864. PubMed
Arca B, Lombardo F, Valenzuela JG, Francischetti IM, Marinotti O, Coluzzi M, et al. (2005) An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol 208: 3971–3986. PubMed
Calvo E, Pham VM, Lombardo F, Arcà B, Ribeiro JMC (2006) The sialotranscriptome of adult male Anopheles gambiae mosquitoes. Insect Biochem Mol Biol 36:570–575. PubMed
Neira Oviedo M, Ribeiro JMC, Heyland A, VanEkeris L, Moroz T, Linser PJ (2009) The salivary transcriptome of Anopheles gambiae (Diptera: Culicidae) larvae: A microarray-based analysis. Insect Biochem Mol Biol. 39: 382–394. 10.1016/j.ibmb.2009.03.001 PubMed DOI PMC
Ribeiro JMC, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, et al. (2006) An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 36: 111–129. PubMed
Das S, Radtke A, Choi Y-J, Mendes A, Valenzuela J, Dimopoulos G (2010) Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding. BMC Genomics 11: 566 10.1186/1471-2164-11-566 PubMed DOI PMC
Alarcon-Chaidez FJ, Sun J, Wikel SK (2007) Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). Insect Biochem Mol Biol 37: 48–71. PubMed
Alves-Silva J, Ribeiro J, Abbeele J, Attardo G, Hao Z, Haines L, et al. (2010) An insight into the sialome of Glossina morsitans morsitans. BMC Genomics. 11: 213 10.1186/1471-2164-11-213 PubMed DOI PMC
Matsumoto Y, Suetsugu Y, Nakamura M, Hattori M (2014) Transcriptome analysis of the salivary glands of Nephotettix cincticeps (Uhler). J Insect Physiol 71: 170–176. 10.1016/j.jinsphys.2014.10.010 PubMed DOI
Stafford-Banks CA, Rotenberg D, Johnson BR, Whitfield AE, Ullman DE (2014) Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS One. 9: e94447 10.1371/journal.pone.0094447 PubMed DOI PMC
Hull JJ, Geib SM, Fabrick JA, Brent CS (2013) Sequencing and De Novo assembly of the western tarnished plant bug (Lygus hesperus) transcriptome. PLoS One. 8: e55105 10.1371/journal.pone.0055105 PubMed DOI PMC
Zhang L, Xu P, Xiao H, Lu Y, Liang G, Zhang Y, et al. (2015) Molecular characterization and expression profiles of polygalacturonase genes in Apolygus lucorum (Hemiptera: Miridae). PLoS ONE. 10: e0126391 10.1371/journal.pone.0126391 PubMed DOI PMC
Cooper WR, Nicholson SJ, Puterka GJ (2013) Salivary proteins of Lygus hesperus (Hemiptera: Miridae). Ann Entomol Soc Am 106: 86–92.
Perera OP, Gore J, Snodgrass GL, Jackson RE, Allen KC, Abel CA, et al. Temporal and spatial genetic variability among tarnished plant bug (Hemiptera: Miridae) populations in a small geographic area. Ann Entomol Soc Am 108: 181–192.
Perera OP, Snodgrass GL, Scheffler BE, Gore J, Abel CA (2007) Characterization of eight polymorphic microsatellite markers in the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). Mol Ecol Notes 7: 987–989.
Allen ML (2007) Expressed sequenced tags from Lygus lineolaris (Hemiptera: Miridae), the tarnished plant bug. Genet Mol Res 6: 206–213. PubMed
Magalhaes LC, van Kretschmar JB, Donohue KV, Roe RM (2013) Pyrosequencing of the adult tarnished plant bug, Lygus lineolaris, and characterization of messages important in metabolism and development. Entomol Exp et Applic 146:364–378.
Zhu YC, Guo Z, He Y, Luttrell R (2012) Microarray analysis of gene regulations and potential association with acephate-resistance and fitness cost in Lygus lineolaris. PLoS One 7: e37586 10.1371/journal.pone.0037586 PubMed DOI PMC
Zhu YC, Luttrell R (2015) Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris. Pest Manage Sci. 71: 40–57. PubMed
Winnebeck EC, Millar CD, Warman GR (2010) Why does insect RNA look degraded? J Insect Sci 10:159 10.1673/031.010.14119 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfor 30: 2114–2120. PubMed PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 29: 644–652. PubMed PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8: 1494–1512. 10.1038/nprot.2013.084 PubMed DOI PMC
Yang Y, Smith S (2013) Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genomics. 14:328 10.1186/1471-2164-14-328 PubMed DOI PMC
Consortium TU (2015) UniProt: a hub for protein information. Nucleic Acids Res 43: D204–D212. 10.1093/nar/gku989 PubMed DOI PMC
Tribolium Genome Sequencing Consortium, Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, et al. (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452: 949–955. 10.1038/nature06784 PubMed DOI
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. (2000) The Genome sequence of Drosophila melanogaster. Science 287: 2185–2195. PubMed
The International Aphid Genomics C (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8: e1000313 10.1371/journal.pbio.1000313 PubMed DOI PMC
Su Y-L, Li J-M, Li M, Luan J-B, Ye X-D, Wang X-W, et al. (2012) Transcriptomic analysis of the salivary glands of an invasive whitefly. PLoS One. 7: e39303 10.1371/journal.pone.0039303 PubMed DOI PMC
Ji R, Yu H, Fu Q, Chen H, Ye W, Li S, et al. (2013) Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLoS One 8: e79612 10.1371/journal.pone.0079612 PubMed DOI PMC
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36: D480–D484. PubMed PMC
Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28: 27–30. PubMed PMC
Maffei ME, Mithöfer A, Arimura G-I, Uchtenhagen H, Bossi S, Bertea CM, et al. (2006) Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol 140: 1022–1035. PubMed PMC
Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12: 310–316. PubMed
Torres MA (2010) ROS in biotic interactions. Physiol Plantarum 138: 414–429. PubMed
Perera OP, Snodgrass GL, Allen KC, Jackson RE, Becnel JJ, O’Leary PF, et al. (2012) The complete genome sequence of a single-stranded RNA virus from the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). J Invertebr Pathol 109: 11–19. 10.1016/j.jip.2011.08.004 PubMed DOI
Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Molecular Life Sci 58: 2085–2097. PubMed PMC
Shelby K (2013) Functional immunomics of the squash bug, Anasa tristis (De Geer) (Heteroptera: Coreidae). Insects. 4: 712 10.3390/insects4040712 PubMed DOI PMC
O'Neill MA (2003) In: Rose JKC, editor. The Plant Cell Wall: Blackwell Publishing; pp. 1–54.
Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47: 9–27. PubMed
Kirsch R, Gramzow L, Theißen G, Siegfried BD, ffrench-Constant RH, Heckel DG, et al. (2014) Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles. Insect Biochem Mol Biol 52: 33–50. 10.1016/j.ibmb.2014.06.008 PubMed DOI
Pauchet Y, Kirsch R, Giraud S, Vogel H, Heckel DG (2014) Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica. Insect Biochem Mol Biol 49:1–13. 10.1016/j.ibmb.2014.03.004 PubMed DOI
Pauchet Y, Wilkinson P, Chauhan R, ffrench-Constant RH (2010) Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS One 5: e15635 10.1371/journal.pone.0015635 PubMed DOI PMC
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37: D233–D238. 10.1093/nar/gkn663 PubMed DOI PMC
Markovič O, Janeček Š (2001) Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Engineer 14: 615–631. PubMed
Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280: 309–316. PubMed PMC
Choi JK, Lee BH, Chae CH, Shin W (2004) Computer modeling of the rhamnogalacturonase–“hairy” pectin complex. Proteins: Structure, Function, and Bioinformatics 55:22–33. PubMed
Kirsch R, Wielsch N, Vogel H, Svatos A, Heckel DG, Pauchet Y (2012) Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle. BMC Genomics. 13:587 10.1186/1471-2164-13-587 PubMed DOI PMC
Stiburek L, Cesnekova J, Kostkova O, Fornuskova D, Vinsova K, Wenchich L, et al. (2012) YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol Biol Cell. 23: 1010–1023. 10.1091/mbc.E11-08-0674 PubMed DOI PMC
Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, et al. (2002) Herbivory: Caterpillar saliva beats plant defences. Nature 416: 599–600. PubMed
Musser RO, Cipollini DF, Hum-Musser SM, Williams SA, Brown JK, Felton GW (2005) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Physiol 58: 128–137. PubMed
Tian D, Peiffer M, Shoemaker E, Tooker J, Haubruge E, Francis F, et al. (2012) Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS One 7: e36168 10.1371/journal.pone.0036168 PubMed DOI PMC
de la Paz Celorio-Mancera M, Courtiade J, Muck A, Heckel DG, Musser RO, Vogel H (2011) Sialome of a generalist lepidopteran herbivore: Identification of transcripts and proteins from Helicoverpa armigera labial salivary glands. PLoS One 6: e26676 10.1371/journal.pone.0026676 PubMed DOI PMC
Harmel N, Létocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, et al. (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol Biol 17:165–174. 10.1111/j.1365-2583.2008.00790.x PubMed DOI
Singh H, Dixit S, Verma PC, Singh PK (2013) Differential peroxidase activities in three different crops upon insect feeding. Plant Signal Behav 8: e25615 10.4161/psb.25615 PubMed DOI PMC
Dubey N, Goel R, Ranjan A, Idris A, Singh S, Bag S, et al. (2013) Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genomics. 14: 1–20. PubMed PMC
Doyle WA, Burke JF, Chovnick A, Dutton FL, Whittle JRS, Bray RC (1996) Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism. European J Biochem 239: 782–795. PubMed
Gray M, Charpentier A, Walsh K, Wu P, Bender W (1991) Mapping point mutations in the Drosophila rosy locus using denaturing gradient gel blots. Genetics 127: 139–149. PubMed PMC
Hayashi Y (1961) Properties of xanthine dehydrogenase in the silkworm, Bombyx mori L. Nature 192: 756–757. PubMed
Keith TP, Riley MA, Kreitman M, Lewontin RC, Curtis D, Chambers G (1987) Sequence of the structural gene for xanthine dehydrogenase (rosy Locus) in Drosophila melanogaster. Genetics 116: 67–73. PubMed PMC
Kômoto N, Yukuhiro K, Tamura T (1999) Structure and expression of tandemly duplicated xanthine dehydrogenase genes of the silkworm (Bombyx mori). Insect Mol Biol 8: 73–83. PubMed
Vorbach C, Harrison R, Capecchi MR (2003) Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol 24: 512–517. PubMed
Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, et al. (2011) Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. J Proteome Res 10: 1505–1518. 10.1021/pr100881q PubMed DOI
Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9: 2457–2467. 10.1002/pmic.200800692 PubMed DOI
Will T, Furch AC, Zimmermann MR (2013) How phloem-feeding insects face the challenge of phloem-located defenses. Front Plant Sci. 4: 336 10.3389/fpls.2013.00336 PubMed DOI PMC
Smith TM, Kirley TL (2006) The calcium activated nucleotidases: A diverse family of soluble and membrane associated nucleotide hydrolyzing enzymes. Purinergic Signal 2: 327–333. 10.1007/s11302-005-5300-7 PubMed DOI PMC
Chisava S, Murphy AM, Hamilton JM, Lindsey K, Carr JP, Slabas AR (2009) Extracellular ATP is a regulator of pathogen defence in plants. Plant J 60: 436–448. 10.1111/j.1365-313X.2009.03968.x PubMed DOI
Chisava A, Tomé DFA, Murphy AM, Hamilton JM, Lindsey K, Carr JP, et al.(2009) Extracellular ATP: A modulator of cell death and pathogen defence in plants. Plat Signal Behav 4: 1078–1080. PubMed PMC
Lim MH, Wu J, Yao J, Callardo IF, Dugger JW, Webb LJ, et al. (2014) Apyrase supression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. Plant Physiol 164: 2054–2067. 10.1104/pp.113.233429 PubMed DOI PMC
Allen ML, Walker WB III (2012) Saliva of Lygus lineolaris digests double stranded ribonucleic acids. J Insect Physiol 58: 391–396. 10.1016/j.jinsphys.2011.12.014 PubMed DOI
Cohen AC (2000) New oligidic production diet for Lygus hesperus Knight and L. lineolaris (Palisot de Beauvois). J Entomol Sci 25: 301–310.
Kodama Y, Shumway M, Leinonen R (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40:D54–D56. 10.1093/nar/gkr854 PubMed DOI PMC
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinfor 12: 323. PubMed PMC
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. (2014) Pfam: the protein families database. Nucleic Acids Res 42: D222–D230. 10.1093/nar/gkt1223 PubMed DOI PMC
Attwood TK, Coletta A, Muirhead G, Pavlopoulou A, Philippou PB, Popov I, et al. (2012) The PRINTS database: a fine-grained protein sequence annotation and analysis resource—its status in 2012. Database: The Journal of Biological Databases and Curation.: bas019 10.1093/database/bas019 PubMed DOI PMC
de Lima Morais DA, Fang H, Rackham OJL, Wilson D, Pethica R, Chothia C, et al. (2011) SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Res 39: D427–D434. 10.1093/nar/gkq1130 PubMed DOI PMC
Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E (2013) TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res 41: D387–D395. 10.1093/nar/gks1234 PubMed DOI PMC
Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein families. Nucleic Acids Res 31:371–373. PubMed PMC
Letunic I, Doerks T, Bork P (2014) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260. 10.1093/nar/gku949 PubMed DOI PMC
Oates ME, Stahlhacke J, Vavoulis DV, Smithers B, Rackham OJL, Sardar AJ, et al. (2015) The SUPERFAMILY 1.75 database in 2014: a doubling of data. Nucleic Acids Res 43: D227–D233. 10.1093/nar/gku1041 PubMed DOI PMC
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33: W116–W120. PubMed PMC
Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, et al. (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3: 265–274. PubMed
Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41: D344–D347. 10.1093/nar/gks1067 PubMed DOI PMC
Sillitoe I, Lewis TE, Cuff A, Das S, Ashford P, Dawson NL, et al. (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res 43: D376–D381. 10.1093/nar/gku947 PubMed DOI PMC
Wu CH, Nikolskaya A, Huang H, Yeh L-SL, Natale DA, Vinayaka CR, et al. (2004) PIRSF: family classification system at the Protein Information Resource. Nucleic Acids Res 32: D112–D114. PubMed PMC
Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, et al. (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33: D284–D288. PubMed PMC
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. (2003) PANTHER: A library of protein families and subfamilies indexed by function. Genome Res 13: 2129–2141. PubMed PMC
Consortium TGO (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43: D1049–D1056. 10.1093/nar/gku1179 PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580. PubMed
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. 10.1038/nmeth.1701 PubMed DOI
Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics. 23: 257–258. PubMed
Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 23: 1061–1067. PubMed
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res 43: D222–D226. 10.1093/nar/gku1221 PubMed DOI PMC
Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evol 39: 783–791. PubMed
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:c406–425. PubMed
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC