Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range

. 2016 Jan ; 6 (1) : 68-77. [epub] 20151208

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26811775

In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.

Zobrazit více v PubMed

Alerstam, T. 2011. Optimal bird migration revisited. J. Ornithol. 152:5–23.

Ashton, K. G. 2002. Patterns of within‐species body size variation of birds: strong evidence for Bergmann's rule. Glob. Ecol. Biogeogr. 11:505–523.

Balbontín, J. , Møller A. P., Hermosell I. G., Marzal A., Reviriego M., and De Lope F.. 2009. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 78:981–989. PubMed

Bowlin, M. S. , and Wikelski M.. 2008. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLoS One 3:e2154. PubMed PMC

Bridge, E. S. , Kelly J. F., Bjornen P. E., Curry C. M., Crawford P. H. C., and Paritte J. M.. 2010. Effects of nutritional condition on spring migration: do migrants use resource availability to keep pace with a changing world? J. Exp. Biol. 213:2424–2429. PubMed

Brooks, S. , and Gelman A.. 1998. Some issues in monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7:434–455.

Chmielewski, F.‐M. , and Rötzer T.. 2002. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim. Res. 19:257–264.

Cooper, N. W. , Murphy M. T., Redmond L. J., and Dolan A. C.. 2011. Reproductive correlates of spring arrival date in the Eastern Kingbird Tyrannus tyrannus . J. Ornithol. 152:143–152.

Cramp, S. 1988. The Birds of Western Palearctic. Oxford Univ. Press, Oxford.

Dickinson, E.C. , and Christidis L.. 2014. The Horward & Moore Complete Checklist of the Birds of the World, 4th edn Aves Press, Eastbourne.

Dorsch, H. 2010. [Biometry of small bird species]. Mitteilung Verein Sächsischer Ornithologen 10(Special issue 2):1–275.

Drent, R. H. 2006. The timing of birds’ breeding seasons: the Perrins hypothesis revisited especially for migrants. Ardea 94:305–322.

Eck, S. 1975. Über die Nachtigallen (Luscinia megarhynchos) Mittel‐ und Südosteuropas. Beiträge zur Vogelkunde 21:21–30.

Emmenegger, T. , Hahn S., and Bauer S.. 2014. Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol. 14:9. PubMed PMC

Fiedler, W. 2005. Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann. N. Y. Acad. Sci. 1046:253–263. PubMed

Förschler, M. I. , and Bairlein F.. 2011. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS One 6:e18732. PubMed PMC

Freeman, S. , and Jackson W. M.. 1990. Univariate metrics are not adequate to measure avian body size. Auk 107:69–74.

Gosler, A. G. , Greenwood J. J. D., Baker J. K., and Davidson N. C.. 1998. The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study 45:92–103.

Hahn, S. , Amrhein V., Zehtindjiev P., and Liechti F.. 2013. Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long‐distance migrating songbird. Oecologia 173:1217–1225. PubMed

Hahn, S. , Emmenegger T., Lisovski S., Amrhein V., Zehtindjiev P., and Liechti F.. 2014. Variable detours in long‐distance migration across ecological barriers and their relation to habitat availability at ground. Ecol. Evol. 4:4150–4160. PubMed PMC

Hedenström, A. 2002. Aerodynamics, evolution and ecology of avian flight. Trends Ecol. Evol. 17:415–422.

IUCN . 2012. Red list of threatened species. Available at http://www.iucnredlist.org.

Jarošík, V. , Honěk A., Magarey R. D., and Skuhrovec J.. 2011. Developmental database for phenology models: related insect and mite species have similar thermal requirements. J. Econ. Entomol. 104:1870–1876. PubMed

Johnston, R. F. , and Selander R. K.. 1972. Variation, adaptation, and evolution in the North American house sparrow Pp. 301–325 in Kendeigh S. C. and Pinowski J., eds. Productivity, Population Dynamics and Systematics of Granivorous Birds. Polish Scientific Publishers, Warzawa.

Kemp, M. U. , van Loon E. E., Shamoun‐Baranes J., and Bouten W.. 2012. RNCEP: global weather and climate data at your fingertips. Methods Ecol. Evol. 3:65–70.

Kipp, F. A. 1959. Der Handflügel‐Index als flugbiologisches Maß. Vogelwarte 20:77–86.

Kokko, H. 1999. Competition for early arrival in migratory birds. J. Anim. Ecol. 68:940–950.

Kölzsch, A. , Bauer S., de Boer R., Griffin L., Cabot D., Exo K.‐M., et al. 2015. Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J. Anim. Ecol. 84:272–283. PubMed

Korner‐Nievergelt, F. , Liechti F., and Hahn S.. 2012. Migratory connectivity derived from sparse ring reencounter data with unknown numbers of ringed birds. J. Ornithol. 153:771–782.

Leisler, B. , and Winkler H.. 1985. Ecomorphology Pp. 155–186 in Johnston R. F., ed. Current Ornithology. Plenum Press, New York.

Leisler, B. , and Winkler H.. 2003. Morphological consequences of migration in passerines Pp. 175–186 in Berthold P., Gwinner E. and Sonnenschein E., eds. Avian Migration. Springer‐Verlag, Berlin.

Loskot, V. M. 1981. [On the subspecies of the nightingale (Luscinia megarhynchos Brehm)]. Trudy Zoologitscheskovo Instituta Akademji Nauk SSSR 102:62–71.

Matyjasiak, P. , Olejniczak I., Boniecki P., and Moller A. P.. 2013. Wing characteristics and spring arrival date in Barn Swallows Hirundo rustica . Acta Ornithologica 48:81–92.

Meiri, S. , and Dayan T.. 2003. On the validity of Bergmann's rule. J. Biogeogr. 30:331–351.

Menzel, A. , Sparks T. H., Estrella N., and Eckhardt S.. 2005. ‘SSW to NNE’– North Atlantic Oscillation affects the progress of seasons across Europe. Glob. Chang. Biol. 11:909–918.

Milá, B. , Wayne R. K., and Smith T. B.. 2008. Ecomorphology of migratory and sedentary populations of the Yellow‐Rumped Warbler (Dendroica coronata). Condor 110:335–344.

Nilsson, C. , Klaassen R. H. G., and Alerstam T.. 2013. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181:837–845. PubMed

Norberg, U. M. 1995. Wing design and migratory flight. Isr. J. Zool. 41:297–305.

Pennycuick, C. J. 2008. Modelling the Flying Bird. Pp. 1–480. Elsevier, Amsterdam.

Pérez‐Tris, J. , and Tellería J. L.. 2001. Age‐related variation in wing morphology of migratory and sedentary blackcaps, Sylvia atricapilla . J. Avian Biol. 32:207–213.

Perktaş, U. 2011. Ecogeographical variation of body size in Chaffinches Fringilla coelebs . Bird Study 58:264–277.

Pettorelli, N. , Vik J. O., Mysterud A., Gaillard J.‐M., Tucker C. J., and Stenseth N. C.. 2005. Using the satellite‐derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20:503–510. PubMed

Piersma, T. , and Davidson N. C.. 1991. Confusions of mass and size. Auk 108:441–443.

Potti, J. 1998. Arrival time from spring migration in male Pied Flycatchers: individual consistency and familial resemblance. Condor 100:702–708.

Rising, J. D. , and Somers K. M.. 1989. The measurement of overall body size in birds. Auk 106:666–674.

Saino, N. , and Ambrosini R.. 2008. Climatic connectivity between Africa and Europe may serve as a basis for phenotypic adjustment of migration schedules of trans‐Saharan migratory birds. Glob. Chang. Biol. 14:250–263.

Senar, J. C. , and Pascual J.. 1997. Keel and tarsus length may provide a good predictor of avian body size. Ardea 85:269–274.

Smith, R. J. , and Moore F. R.. 2005. Arrival timing and seasonal reproductive performance in a long‐distance migratory landbird. Behav. Ecol. Sociobiol. 57:231–239.

Stolt, B. O. , and Fransson T.. 1995. Body mass, wing length and spring arrival of the Ortolan bunting Emberiza hortulana . Ornis Fennica 72:14–18.

Stresemann, E. 1920. Avifauna Macedonica: die ornithologischen Ergebnisse der Forschungsreisen, unternommen nach Mazedonien durch Prof. Dr. Doflein und Prof. L. Müller‐Mainz in den Jahren 1917 und 1918. von Dultz, München.

Tucker, C. J. , Pinzon J. E., and Brown M. E. 2004. Global Inventory Modeling and Mapping Studies. ed. U.o.M. Global Land Cover Facility, College Park, Maryland.

Walter, H. , and Breckle S.‐W.. 1994. [Ecology of the Earth], 2nd edn Spektrum Akademischer Verlag, Heidelberg.

Walther, B. A. , van Niekerk A., Thuiller W., Baumann S., Dean W. R. J., de Bruijn B., et al. 2010. A database of Western Palearctic birds migrating within Africa to guide conservation decisions Pp. 50–104 in Harebottle D. M., Craig A. J. F. K., Anderson M. D., Rakotomanana H., Muchai M., eds. 12th Pan‐African Ornithological Congress 2008. Animal Demography Unit, Cape Town.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...