Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid 'Dodoens'
Jazyk angličtina Země Kanada Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26843210
PubMed Central
PMC4885949
DOI
10.1093/treephys/tpv144
PII: tpv144
Knihovny.cz E-zdroje
- Klíčová slova
- Huber value, LMA, anatomy, petiole, potential transpiration, sap flow, water potential gradient,
- MeSH
- analýza hlavních komponent MeSH
- časové faktory MeSH
- hybridizace genetická MeSH
- kvantitativní znak dědičný * MeSH
- listy rostlin mikrobiologie fyziologie MeSH
- nemoci rostlin mikrobiologie MeSH
- Ophiostoma fyziologie MeSH
- stonky rostlin mikrobiologie fyziologie MeSH
- transpirace rostlin fyziologie MeSH
- Ulmus mikrobiologie fyziologie MeSH
- voda MeSH
- xylém mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- voda MeSH
To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees.
Department of Phytology Technical University in Zvolen T G Masaryka 24 960 53 Zvolen Slovak Republic
Zobrazit více v PubMed
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper 56 FAO, Rome.
Bauerle WL, Hinckley TM, Cermak J, Kucera J, Bible K (1999) The canopy water relations of old-growth Douglas-fir trees. Trees 13:211–217. doi:10.1007/s004680050235 DOI
Binz T, Canevascini G (1996) Xylanases from the Dutch elm disease pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi. Physiol Mol Plant Pathol 49:159–175. doi:10.1006/pmpp.1996.0046 DOI
Brasier CM. (2000) Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. In: Dunn CP. (ed) The elms: breeding, conservation and disease management. Kluwer Academic Publishers, Boston, pp 61–72.
Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042 DOI
Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173. doi:10.1104/pp.103.023879 PubMed DOI PMC
Brodribb TJ, Holbrook NM (2005a) Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer. Plant Physiol 137:1139–1146. doi:10.1104/pp.104.058156 PubMed DOI PMC
Brodribb TJ, Holbrook NM (2005b) Leaf physiology does not predict leaf habit; examples from tropical dry forest. Trees 19:290–295. doi:10.1007/s00468-004-0390-3 DOI
čermák J, Jiménez SM, González-Rodríguez AM, Morales D (2002) Laurel forests in Tenerife, Canary Islands. Trees 16:538–546. doi:10.1007/s00468-002-0198-y DOI
Cochard H, Froux F, Mayr S, Coutand C (2004a) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408. doi:10.1104/pp.103.028357 PubMed DOI PMC
Cochard H, Nardini A, Coll L (2004b) Hydraulic architecture of leaf blades: where is the main resistance? Plant Cell Environ 27:1257–1267. doi:10.1111/j.1365-3040.2004.01233.x DOI
Cruiziat P, Cochard H, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752. doi:10.1051/forest:2002060 DOI
Dias MC, Oliveira H, Costa A, Santos C (2014) Improving elms performance under drought stress: the pretreatment with abscisic acid. Environ Exp Bot 100:64–73. doi:10.1016/j.envexpbot.2013.12.013 DOI
Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H (2011) The evolution of the worldwide leaf economics spectrum. Trends Ecol Evol 26:88–95. doi:10.1016/j.tree.2010.11.011 PubMed DOI
Duchesne L. (1993) Mechanisms of resistance: can they help save susceptible elms? In: Sticklen M, Sherald J (eds) Dutch elm disease research: cellular and molecular approaches. Springer, New York, pp 239–254.
Ďurkovič J, Kardošová M, čaňová I, Lagaňa R, Priwitzer T, Chorvát D Jr, Cicák A, Pichler V (2012) Leaf traits in parental and hybrid species of Sorbus (Rosaceae). Am J Bot 99:1489–1500. doi:10.3732/ajb.1100593 PubMed DOI
Ďurkovič J, čaňová I, Lagaňa R, Kučerová V, Moravčík M, Priwitzer T, Urban J, Dvořák M, Krajňáková J (2013) Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. Ann Bot 111:215–227. doi:10.1093/aob/mcs274 PubMed DOI PMC
Ďurkovič J, Kačík F, Olčák D, Kučerová V, Krajňáková J (2014) Host responses and metabolic profiles of wood components in Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. Ann Bot 114:47–59. doi:10.1093/aob/mcu076 PubMed DOI PMC
Ďurkovič J, Kačík F, Olčák D (2015) An evaluation of cellulose degradation affected by Dutch elm disease. Bio-protocol 5:e1535.
Dvořák M, Tomšovský M, Jankovský L, Novotný D (2007) Contribution to identify the causal agents of Dutch elm disease in the Czech Republic. Plant Prot Sci 43:142–145.
Ghelardini L, Santini A (2009) Avoidance by early flushing: a new perspective on Dutch elm disease research. iForest 2:143–153. doi:10.3832/ifor0508-002 DOI
Guyot G, Scoffoni C, Sack L (2012) Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant Cell Environ 35:857–871. doi:10.1111/j.1365-3040.2011.02458.x PubMed DOI
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. doi:10.1007/s004420100628 PubMed DOI
Hubbes M. (2004) Induced resistance for the control of Dutch elm disease. Investig Agrar Sist Recur For 13:185–196.
Klein T. (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28:1313–1320. doi:10.1111/1365-2435.12289 DOI
Konrad H, Kirisits T, Riegler M, Halmschlager E, Stauffer C (2002) Genetic evidence for natural hybridization between the Dutch elm disease pathogens Ophiostoma novo-ulmi ssp. novo-ulmi and O. novo-ulmi ssp. americana. Plant Pathol 51:78–84. doi:10.1046/j.0032-0862.2001.00653.x DOI
Larcher W. (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 4th edn Springer, Berlin, 513 pp.
Lewis MA, Boose ER (1995) Estimating volume flow rates through xylem conduits. Am J Bot 82:1112–1116. doi:10.2307/2446063 DOI
Limousin JM, Longepierre D, Huc R, Rambal S (2010) Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion. Tree Physiol 30:1026–1036. doi:10.1093/treephys/tpq062 PubMed DOI
Martín JA, Solla A, Woodward S, Gil L (2007) Detection of differential changes in lignin composition of elm xylem tissues inoculated with Ophiostoma novo-ulmi using Fourier transform-infrared spectroscopy. For Pathol 37:187–191. doi:10.1111/j.1439-0329.2007.00495.x DOI
Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014) A new look at water transport regulation in plants. New Phytol 204:105–115. doi:10.1111/nph.12912 PubMed DOI
Martre P, Durand JL, Cochard H (2000) Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytol 146:235–247. doi:10.1046/j.1469-8137.2000.00641.x PubMed DOI
McDowell N, Barnard H, Bond B et al. (2002) The relationship between tree height and leaf area: sapwood area ratio. Oecologia 132:12–20. doi:10.1007/s00442-002-0904-x PubMed DOI
Mencuccini M, Grace J (1995) Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol 15:1–10. doi:10.1093/treephys/15.1.1 PubMed DOI
Nardini A, Pedà G, La Rocca N (2012) Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytol 196:788–798. doi:10.1111/j.1469-8137.2012.04294.x PubMed DOI
Newbanks D, Bosch A, Zimmermann MH (1983) Evidence for xylem dysfunction by embolization in Dutch elm disease. Phytopathology 73:1060–1063. doi:10.1094/Phyto-73-1060 DOI
Nobel PS. (2005) Physicochemical and environmental plant physiology, 3rd edn Elsevier, Burlington, MA, 567 pp.
Otieno DO, Schmidt MWT, Adiku S, Tenhunen J (2005) Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. Tree Physiol 25:361–371. doi:10.1093/treephys/25.3.361 PubMed DOI
Ouellette GB, Rioux D (1992) Anatomical and physiological aspects of resistance to Dutch elm disease. In: Blanchette RA, Biggs AR (eds) Defense mechanisms of woody plants against fungi. Springer, Berlin, pp 257–307.
Ouellette GB, Rioux D, Simard M, Cherif M (2004) Ultrastructural and cytochemical studies of host and pathogens in some fungal wilt diseases: retro- and introspection towards a better understanding of DED. Invest Agrar Sist Recur For 13:119–145.
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. doi:10.1111/j.1469-8137.2009.02830.x PubMed DOI
R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: http://www.R-project.org/ (26 January 2016, date last accessed).
Riceter H. (1973) Frictional potential losses and total water potential in plants: a re-evaluation. J Exp Bot 24:983–994. doi:10.1093/jxb/24.6.983 DOI
Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381. doi:10.1146/annurev.arplant.56.032604.144141 PubMed DOI
Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356. doi:10.1046/j.0016-8025.2003.01058.x DOI
Sack L, Tyree MT, Holbrook NM (2005) Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol 167:403–413. doi:10.1111/j.1469-8137.2005.01432.x PubMed DOI
Smalley EB, Guries RP (1993) Breeding elms for resistance to Dutch elm disease. Annu Rev Phytopathol 31:325–352. doi:10.1146/annurev.py.31.090193.001545 DOI
Solla A, Bohnens J, Collin E et al. (2005) Screening European elms for resistance to Ophiostoma novo-ulmi. For Sci 51:134–141.
Sperry JS. (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164:S115–S127. doi:10.1086/368398 DOI
Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359. doi:10.1046/j.1365-3040.1998.00287.x DOI
Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645. doi:10.1111/j.1365-3040.2007.01765.x PubMed DOI
Svaldi R, Elgersma DM (1982) Further studies on the activity of cell wall degrading enzymes of aggressive and non-aggressive isolates of Ophiostoma ulmi. Eur J For Pathol 12:29–36. doi:10.1111/j.1439-0329.1982.tb01369.x DOI
Takai S, Richards WC (1978) Cerato-ulmin, a wilting toxin of Ceratocystis ulmi: isolation and some properties of cerato-ulmin from the culture of C. ulmi. J Phytopathol 91:129–146. doi:10.1111/j.1439-0434.1978.tb04205.x DOI
Tyree MT. (1997) The Cohesion–Tension theory of sap ascent: current controversies. J Exp Bot 48:1753–1765.
Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn Springer, Berlin, 283 pp.
Urban J, Dvořák M (2014) Sap flow-based quantitative indication of progression of Dutch elm disease after inoculation with Ophiostoma novo-ulmi. Trees 28:1599–1605. doi:10.1007/s00468-014-1068-0 DOI
Van Alfen NK, Turner NC (1975) Influence of a Ceratocystis ulmi toxin on water relations of elm (Ulmus americana). Plant Physiol 55:312–316. doi:10.1104/pp.55.2.312 PubMed DOI PMC
Venturas M, López R, Gascó A, Gil L (2013) Hydraulic properties of European elms: xylem safety-efficiency tradeoff and species distribution in the Iberian Peninsula. Trees 27:1691–1701. doi:10.1007/s00468-013-0916-7 DOI
Venturas M, López R, Martín JA, Gascó A, Gil L (2014) Heritability of Ulmus minor resistance to Dutch elm disease and its relationship to vessel size, but not to xylem vulnerability to drought. Plant Pathol 63:500–509. doi:10.1111/ppa.12115 DOI
Woodruff DR, Meinzer FC, Lachenbruch B (2008) Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport. New Phytol 180:90–99. doi:10.1111/j.1469-8137.2008.02551.x PubMed DOI
Wright IJ, Reich PB, Westoby M et al. (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403 PubMed DOI
Yang S, Tyree MT (1993) Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiol 12:231–242. doi:10.1093/treephys/12.3.231 PubMed DOI
Zimmermann MH. (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295. doi:10.1139/b78-274 DOI