Different Responses in Vascular Traits between Dutch Elm Hybrids with a Contrasting Tolerance to Dutch Elm Disease

. 2022 Feb 22 ; 8 (3) : . [epub] 20220222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35330217

Grantová podpora
ITMS: 313011T678 European Regional Development Fund
ITMS: 313011V465 European Regional Development Fund
1/0450/19 VEGA

The ascomycetous fungus Ophiostoma novo-ulmi is the causative agent of the current Dutch elm disease (DED) pandemic, which has ravaged many tens of millions of European and North American elm trees. Host responses in vascular traits were studied in two Dutch elm hybrids, 'Groeneveld' and 'Dodoens', which show different vascular architecture in the secondary xylem and possess contrasting tolerances to DED. 'Groeneveld' trees, sensitive to DED, possessed a high number of small earlywood vessels. However, these trees showed a poor response to DED infection for the earlywood vascular characteristics. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 decreased from 65.4% down to 53.2%. A delayed response in the increasing density of vessels showing a reduced size in the latewood prevented neither the rapid fungal spread nor the massive colonisation of the secondary xylem tissues resulting in the death of the infected trees. 'Dodoens' trees, tolerant to DED, possessed a low number of large earlywood vessels and showed a prominent and fast response to DED infection. Vessel lumen areas of newly formed earlywood vessels were severely reduced together with the vessel size : number ratio. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 increased from 75.6% up to 92.9%. A trend in the increasing density of vessels showing a reduced size was maintained not only in the latewood that was formed in the year of infection but also in the earlywood that was formed in the consecutive year. The occurrence of fungal hyphae in the earlywood vessels that were formed a year following the infection was severely restricted, as revealed by X-ray micro-computed tomography imaging. Possible reasons responsible for a contrasting survival of 'Groeneveld' and 'Dodoens' trees are discussed.

Zobrazit více v PubMed

Hubbes M. The American elm and Dutch elm disease. For. Chron. 1999;75:265–273. doi: 10.5558/tfc75265-2. DOI

Mittempergher L., Santini A. The history of elm breeding. Invest. Agrar. Sist. Recur. For. 2004;13:161–177.

Smalley E.B., Guries R.P. Breeding elms for resistance to Dutch elm disease. Annu. Rev. Phytopathol. 1993;31:325–352. doi: 10.1146/annurev.py.31.090193.001545. DOI

Buiteveld J., Van Der Werf B., Hiemstra J. Comparison of commercial elm cultivars and promising unreleased Dutch clones for resistance to Ophiostoma novo-ulmi. iForest. 2015;8:158–164. doi: 10.3832/ifor1209-008. DOI

Brasier C., Franceschini S., Forster J., Kirk S. Enhanced outcrossing, directional selection and transgressive segregation drive evolution of novel phenotypes in hybrid swarms of the Dutch elm disease pathogen Ophiostoma novo-ulmi. J. Fungi. 2021;7:452. doi: 10.3390/jof7060452. PubMed DOI PMC

Santini A., Ghelardini L., Pecori F. The Italian elm breeding program for Dutch elm disease resistance. In: Sniezko R.A., Yanchuk A.D., Kliejunas J.T., Palmieri K.M., Alexander J.M., Frankel S.J., editors. Proceedings of the Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees, Eugene, OR, USA, 31 July–5 August 2011. USDA, Forest Service; Albany, CA, USA: 2012. pp. 326–335. General Technical Report PSW-GTR-240.

Martín J.A., Domínguez J., Solla A., Brasier C.M., Webber J.F., Santini A., Martínez-Arias C., Bernier L., Gil L. Complexities underlying the breeding and deployment of Dutch elm disease resistant elms. New For. 2022. in press . PubMed DOI PMC

Martín J.A., Sobrino-Plata J., Rodríguez-Calcerrada J., Collada C., Gil L. Breeding and scientific advances in the fight against Dutch elm disease: Will they allow the use of elms in forest restoration? New For. 2019;50:183–215. doi: 10.1007/s11056-018-9640-x. DOI

Martín J.A., Solla A., Venturas M., Collada C., Domínguez J., Miranda E., Fuentes P., Burón M., Iglesias S., Gil L. Seven Ulmus minor clones tolerant to Ophiostoma novo-ulmi registered as forest reproductive material in Spain. iForest. 2015;8:172–180. doi: 10.3832/ifor1224-008. DOI

Pinon J., Husson C., Collin E. Susceptibility of native French elm clones to Ophiostoma novo-ulmi. Ann. For. Sci. 2005;62:689–696. doi: 10.1051/forest:2005066. DOI

Santini A., Fagnani A., Ferrini F., Ghelardini L., Mittempergher L. Variation among Italian and French elm clones in their response to Ophiostoma novo-ulmi inoculation. For. Pathol. 2005;35:183–193. doi: 10.1111/j.1439-0329.2005.00401.x. DOI

Brasier C.M., Kirk S.A. Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathol. 2010;59:186–199. doi: 10.1111/j.1365-3059.2009.02157.x. DOI

Newbanks D. Evidence for xylem dysfunction by embolization in Dutch elm disease. Phytopathology. 1983;73:1060–1063. doi: 10.1094/Phyto-73-1060. DOI

Yadeta K.A., Thomma B.P.H.J. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013;4:97. doi: 10.3389/fpls.2013.00097. PubMed DOI PMC

Ghelardini L., Santini A. Avoidance by early flushing: A new perspective on Dutch elm disease research. iForest. 2009;2:143–153. doi: 10.3832/ifor0508-002. DOI

Ghelardini L., Santini A., Black-Samuelsson S., Myking T., Falusi M. Bud dormancy release in elm (Ulmus spp.) clones—A case study of photoperiod and temperature responses. Tree Physiol. 2010;30:264–274. doi: 10.1093/treephys/tpp110. PubMed DOI

Martín J.A., Solla A., Ruiz-Villar M., Gil L. Vessel length and conductivity of Ulmus branches: Ontogenetic changes and relation to resistance to Dutch elm disease. Trees. 2013;27:1239–1248. doi: 10.1007/s00468-013-0872-2. DOI

Sinclair W.A., Zahand J.P., Melching J.B. Anatomical marker for resistance of Ulmus americana to Ceratocystis ulmi. Phytopathology. 1975;65:349–352. doi: 10.1094/Phyto-65-349. DOI

Pita P., Rodríguez-Calcerrada J., Medel D., Gil L. Further insights into the components of resistance to Ophiostoma novo-ulmi in Ulmus minor: Hydraulic conductance, stomatal sensitivity and bark dehydration. Tree Physiol. 2018;38:252–262. doi: 10.1093/treephys/tpx123. PubMed DOI

Martín J.A., Solla A., Esteban L.G., de Palacios P., Gil L. Bordered pit and ray morphology involvement in elm resistance to Ophiostoma novo-ulmi. Can. J. For. Res. 2009;39:420–429. doi: 10.1139/X08-183. DOI

Ďurkovič J., Čaňová I., Lagaňa R., Kučerová V., Moravčík M., Priwitzer T., Urban J., Dvořák M., Krajňáková J. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. Ann. Bot. 2013;111:215–227. doi: 10.1093/aob/mcs274. PubMed DOI PMC

Ďurkovič J., Kačík F., Olčák D., Kučerová V., Krajňáková J. Host responses and metabolic profiles of wood components in Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. Ann. Bot. 2014;114:47–59. doi: 10.1093/aob/mcu076. PubMed DOI PMC

Büchel K., Fenning T., Gershenzon J., Hilker M., Meiners T. Elm defence against herbivores and pathogens: Morphological, chemical and molecular regulation aspects. Phytochem. Rev. 2016;15:961–983. doi: 10.1007/s11101-015-9442-0. DOI

Heybroek H.M. De iep ‘Groeneveld’—The ‘Groeneveld’ elm. Plant Dis. Rep. 1964;48:187–189.

Heybroek H.M. Drie nieawe iepeklonen. Ned. Bosb. Tijdschr. 1976;48:117–123.

Konrad H., Kirisits T., Riegler M., Halmschlager E., Stauffer C. Genetic evidence for natural hybridization between the Dutch elm disease pathogens Ophiostoma novo-ulmi ssp. novo-ulmi and O. novo-ulmi ssp. americana. Plant Pathol. 2002;51:78–84. doi: 10.1046/j.0032-0862.2001.00653.x. DOI

Brasier C.M. Laboratory investigation of Ceratocystis ulmi. In: Stipes R.J., Campana R.J., editors. Compendium of Elm Disease. American Phytopathological Society; St. Paul, MN, USA: 1981. pp. 76–79.

Solla A., Bohnens J., Collin E., Diamandis S., Franke A., Gil L., Burón M., Santini A., Mittempergher L., Pinon J., et al. Screening European elms for resistance to Ophiostoma novo-ulmi. For. Sci. 2005;51:131–141.

Plichta R., Urban J., Gebauer R., Dvořák M., Ďurkovič J. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid ‘Dodoens’. Tree Physiol. 2016;36:335–344. doi: 10.1093/treephys/tpv144. PubMed DOI PMC

Ďurkovič J., Mišalová A. Wood formation during ex vitro acclimatisation in micropropagated true service tree (Sorbus domestica L.) Plant Cell Tissue Organ Cult. 2009;96:343–348. doi: 10.1007/s11240-008-9492-8. DOI

Zanne A.E., Westoby M., Falster D.S., Ackerly D.D., Loarie S.R., Arnold S.E.J., Coomes D.A. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 2010;97:207–215. doi: 10.3732/ajb.0900178. PubMed DOI

Karadžić D., Stanivuković Z., Milanović S., Sikora K., Radulović Z., Račko V., Kardošová M., Ďurkovič J., Milenković I. Development of Neonectria punicea pathogenic symptoms in juvenile Fraxinus excelsior trees. Front. Plant Sci. 2020;11:592260. doi: 10.3389/fpls.2020.592260. PubMed DOI PMC

Ďurkovič J., Kačík F., Mamoňová M., Lagaňa R., Čaňová I., Urban J., Krajňáková J. New insights into Dutch elm disease: Cell wall compositional, ecophysiological, vascular and nanomechanical assessments. Balt. For. 2019;25:10–14. doi: 10.46490/vol25iss1pp010. DOI

Pouzoulet J., Pivovaroff A.L., Santiago L.S., Rolshausen P.E. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Front. Plant Sci. 2014;5:253. doi: 10.3389/fpls.2014.00253. PubMed DOI PMC

Solla A., Gil L. Xylem vessel diameter as a factor in resistance of Ulmus minor to Ophiostoma novo-ulmi. For. Pathol. 2002;32:123–134. doi: 10.1046/j.1439-0329.2002.00274.x. DOI

Zolghadry S., Daryaee M.G., Torkaman J. Evaluation of effect of Ophiostoma novo-ulmi on four major wood species of the elm family in Rasht (North West of Iran) Afr. J. Environ. Sci. Technol. 2013;7:794–798.

Martín J.A., Solla A., Oszako T., Gil L. Characterizing offspring of Dutch elm disease-resistant trees (Ulmus minor Mill.) Forestry. 2021;94:374–385. doi: 10.1093/forestry/cpaa040. DOI

Venturas M., López R., Martín J.A., Gascó A., Gil L. Heritability of Ulmus minor resistance to Dutch elm disease and its relationship to vessel size, but not to xylem vulnerability to drought. Plant Pathol. 2014;63:500–509. doi: 10.1111/ppa.12115. DOI

Solla A., Martín J.A., Corral P., Gil L. Seasonal changes in wood formation of Ulmus pumila and U. minor and its relation with Dutch elm disease. New Phytol. 2005;166:1025–1034. doi: 10.1111/j.1469-8137.2005.01384.x. PubMed DOI

Pouzoulet J., Scudiero E., Schiavon M., Rolshausen P.E. Xylem vessel diameter affects the compartmentalization of the vascular pathogen Phaeomoniella chlamydospora in grapevine. Front. Plant Sci. 2017;8:01442. doi: 10.3389/fpls.2017.01442. PubMed DOI PMC

Hughes M.A., Juzwik J., Harrington T.C., Keith L.M. Pathogenicity, symptom development, and colonization of Metrosideros polymorpha by Ceratocystis lukuohia. Plant Dis. 2020;104:2233–2241. doi: 10.1094/PDIS-09-19-1905-RE. PubMed DOI

Juzwik J., Appel D.N., MacDonald W.L., Burks S. Challenges and successes in managing oak wilt in the United States. Plant Dis. 2011;95:888–900. doi: 10.1094/PDIS-12-10-0944. PubMed DOI

Appel D.N. The oak wilt enigma: Perspectives from the Texas epidemic. Annu. Rev. Phytopathol. 1995;33:103–118. doi: 10.1146/annurev.py.33.090195.000535. PubMed DOI

Mepsted R., Flood J., Cooper R.M. Fusarium wilt of oil palm II. Stunting as a mechanism to reduce water stress. Physiol. Mol. Plant Pathol. 1995;46:373–387. doi: 10.1006/pmpp.1995.1029. DOI

Campbell A.S., Ploetz R.C., Rollins J.A. Comparing avocado, swamp bay, and camphortree as hosts of Raffaelea lauricola using a green fluorescent protein (GFP)-labeled strain of the pathogen. Phytopathology. 2017;107:70–74. doi: 10.1094/PHYTO-02-16-0072-R. PubMed DOI

Beier G.L., Lund C.D., Held B.W., Ploetz R.C., Konkol J.L., Blanchette R.A. Variation in xylem characteristics of botanical races of Persea americana and their potential influence on susceptibility to the pathogen Raffaelea lauricola. Trop. Plant Pathol. 2021;46:232–239. doi: 10.1007/s40858-020-00397-y. DOI

Castillo-Argaez R., Vazquez A., Konkol J.L., Vargas A.I., Ploetz R.C., Etxeberria E., Schaffer B. Sap flow, xylem anatomy and photosynthetic variables of three Persea species in response to laurel wilt. Tree Physiol. 2021;41:1004–1018. doi: 10.1093/treephys/tpaa137. PubMed DOI

Comeau A.M., Dufour J., Bouvet G.F., Jacobi V., Nigg M., Henrissat B., Laroche J., Levesque R.C., Bernier L. Functional annotation of the Ophiostoma novo-ulmi genome: Insights into the phytopathogenicity of the fungal agent of Dutch elm disease. Genome Biol. Evol. 2015;7:410–430. doi: 10.1093/gbe/evu281. PubMed DOI PMC

Ouellette G.B. Morphological characteristics of Ceratocystis ulmi (Buism.) C. Moreau in American elm trees. Can. J. Bot. 1962;40:1463–1466. doi: 10.1139/b62-141. DOI

Przybył K., Dahm H., Ciesielska A., Moliński K. Cellulolytic activity and virulence of Ophiostoma ulmi and O. novo-ulmi isolates. For. Pathol. 2006;36:58–67.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...