Development of Neonectria punicea Pathogenic Symptoms in Juvenile Fraxinus excelsior Trees
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33424888
PubMed Central
PMC7785714
DOI
10.3389/fpls.2020.592260
Knihovny.cz E-zdroje
- Klíčová slova
- SEM, X-ray microCT imaging, ash dieback, collar necrosis, common ash, pathogenicity,
- Publikační typ
- časopisecké články MeSH
When monitoring the state of health of Fraxinus excelsior trees, unusual symptoms were discovered within a F. excelsior plantation in Bosnia and Herzegovina. These symptoms included the appearance of necrosis and cankers in the basal parts of the trees, followed by the formation of fruiting bodies, however, none of these symptoms were found in the crowns. After sampling and isolation of the necrotic parts from the stem base, pathogen Neonectria punicea was isolated and identified from the characteristics of pure cultures, morphology of the fruiting bodies, and from multilocus sequencing. In field conditions, juvenile F. excelsior trees were inoculated with two N. punicea isolates obtained from the necrotic tissues of both juvenile F. excelsior and mature Fagus sylvatica trees. In both isolates, 12 months post inoculation, the lengths and widths of the necroses were significantly larger compared to the control. Necroses of significantly larger lengths, widths and surfaces were found again in both tested isolates 24 months post inoculation. In the case of the F. excelsior isolate, the lengths of the necroses at both the stem base and at breast height increased by 1.6 times, whereas the F. sylvatica isolate increased in size by up to 1.7 and 1.8 times, respectively. Trees inoculated without a previous bark wound showed no symptoms, similar to the control trees. Scanning electron microscopy and X-ray micro-computed tomography imaging revealed that N. punicea hyphae penetrated from the cankers to the woody outermost annual growth ring and that hyphae were present mostly in the large earlywood vessels and rarely in the axial parenchyma cells. Hyphae also spread radially through the pits in vessels. The infected trees responded with the formation of tyloses in the vessels to prevent a rapid fungal spread through the axial vascular transport pathway. The ability of N. punicea to cause necroses in juvenile ash trees was demonstrated for the first time during this study. It poses a serious threat to planted forests and natural regenerations of F. excelsior especially if F. sylvatica is considered as a possible inoculum reservoir for future infections. This pathogen should be integrated within future ash resistance or breeding programs.
Department of Forest Protection Forest Research Institute IBL Raszyn Poland
Department of Forest Protection Institute of Forestry Belgrade Belgrade Serbia
Department of Phytology Technical University in Zvolen Zvolen Slovakia
Department of Wood Science Technical University in Zvolen Zvolen Slovakia
Zobrazit více v PubMed
Bakys R., Vasaitis R., Barklund P., Thomsen I. M., Stenlid J. (2009). Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden. Eur. J. For. Res. 128 51–60. 10.1007/s10342-008-0238-2 DOI
Bakys R., Vasiliauskas A., Ihrmark K., Stenlid J., Menkis A., Vasaitis R. (2011). Root rot, associated fungi and their impact on health condition of declining Fraxinus excelsior stands in Lithuania. Scand. J. For. Res. 26 128–135. 10.1080/02827581.2010.536569 DOI
Biggs A. R. (1992). “Responses of angiosperm bark tissues to fungi causing cankers and canker rots,” in Defense Mechanisms of Woody Plants Against Fungi. Springer Series in Wood Science, eds Blanchette R. A., Biggs A. R. (Berlin: Springer-Verlag; ), 41–61. 10.1007/978-3-662-01642-8_3 DOI
Booth C. (1959). Studies of Pyrenomycetales: IV. Nectria (Part I). Mycological Papers, No. 73 Kew: Commonwealth Mycological Institute, 1–115.
Booth C. (1971). Methods in Microbiology, Vol. 4 London: Academic Press, 1–795. 10.1016/S0580-9517(09)70006-6 DOI
Carbone I., Kohn L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91 553–556. 10.1080/00275514.1999.12061051 DOI
Castlebury L., Rossman A. Y., Hyten A. S. (2006). Phylogenetic relationships of Neonectria / Cylindrocarpon on Fagus in North America. Can. J. Bot. 84 1417–1433. 10.1139/b06-105 DOI
Chandelier A., Gerarts F., San Martin G., Herman M., Delahaye L. (2016). Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For. Pathol. 46 289–297. 10.1111/efp.12258 DOI
Cleary M., Daniel G., Stenlid J. (2013). Light and scanning electron microscopy studies of the early infection stages of Hymenoscyphus pseudoalbidus on Fraxinus excelsior. Plant Pathol. 62 1294–1301. 10.1111/ppa.12048 DOI
Crous P. W., Schoch C. L., Hyde K. D., Wood A. R., Gueidan C., de Hoog G. S. (2009). Phylogenetic lineages in the Capnodiales. Stud. Mycol. 64 17–47.S7. 10.3114/sim.2009.64.02 PubMed DOI PMC
Ďurkovič J., Kačík F., Olňák D., Kučerová V., Krajňáková J. (2014). Host responses and metabolic profiles of wood components in Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. Ann. Bot. 114 47–59. 10.1093/aob/mcu076 PubMed DOI PMC
Enderle R., Peters F., Nakou A., Metzler B. (2013). Temporal development of ash dieback symptoms and spatial distribution of collar rots in a provenance trial of Fraxinus excelsior. Eur. J. For. Res. 132 865–876. 10.1007/s10342-013-0717-y DOI
Enderle R., Sander F., Metzler B. (2017). Temporal development of collar necroses and butt rot in association with ash dieback. iForest 10 529–536. 10.3832/ifor2407-010 PubMed DOI
Gross A., Holdenrieder O., Pautasso M., Queloz V., Sieber T. N. (2014). Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol. Plant Pathol. 15 5–21. 10.1111/mpp.12073 PubMed DOI PMC
Hirooka Y., Rossman A. Y., Zhuang W.-Y., Salgado-Salazar C., Chaverri P. (2013). Species delimitation for Neonectria coccinea group including the causal agents of beech bark disease in Asia, Europe, and North America. Mycosystema 32 485–517.
Husson C., Caël O., Grandjean J. P., Nageleisen L. M., Marçais B. (2012). Occurrence of Hymenoscyphus pseudoalbidus on infected ash logs. Plant Pathol. 61 889–895. 10.1111/j.1365-3059.2011.02578.x DOI
Jovanović B. (1971). Dendrologija sa Osnovima Fitocenologije. II Neizmenjeno Izdanje. Beograd: Naučna kniga, 1–576.
Jung T., Blaschke H., Neumann P. (1996). Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Pathol. 26 253–272. 10.1111/j.1439-0329.1996.tb00846.x DOI
Karadžić D., Milanović S., Radulović Z. (2012a). “Present state of beech bark disease in Serbia,” in Proceedings of the International Scientific Conference: Forests in Future – Sustainable Use, Risks and Challenges. 4–5th October 2012, Belgrade, 623–631.
Karadžić D., Milanović S., Radulović Z., Obradović S. (2012b). “The most important parasitic Nectria species and their role in killing trees of Fagus in Serbia and Republic of Srpska,” in Proceedings of the International Scientific Conference: Forestry Science and Practice for the Purpose of Sustainable Development of Forestry–20 Years of the Faculty of Forestry in Banja Luka. 1th – 4th November 2012, Banja Luka, 545–553.
Karadžić D., Radulović Z., Sikora K., Stanivuković Z., Golubović Ćurguz V., Oszako T., et al. (2019). Characterisation and pathogenicity of Cryphonectria parasitica on sweet chestnut and sessile oak trees in Serbia. Plant Protect. Sci. 55 191–201. 10.17221/38/2018-PPS DOI
Keča N., Kirisits T., Menkis A. (2017). First report of the invasive ash dieback pathogen Hymenoscyphus fraxineus on Fraxinus excelsior and F. angustifolia in Serbia. Balt. For. 23 56–59.
Kowalski T. (2006). Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For. Pathol. 36 264–270. 10.1111/j.1439-0329.2006.00453.x DOI
Kranjec Orlović J., Moro M., Diminić D. (2020). Role of root and stem base fungi in Fraxinus angustifolia (Vahl) dieback in Croatian floodplain forests. Forests 11:607 10.3390/f11060607 DOI
Kräutler K., Kirisits T. (2014). The ash dieback pathogen Hymenoscyphus pseudoalbidus is associated with leaf symptoms on ash species (Fraxinus spp.). J. Agric. Ext. Rural Dev. 4 261–265. 10.5897/JAERD12.065 DOI
Kunca A. (2005). Susceptibility of wounds of the European beech bark to infection by Neonectria coccinea and efficiency of the wound treatment. Lesnícky Časopis For. J. 51 21–29. [in English],
Kunca A., Leontovyč R. (1999). Relationship between beech bark wounds and bark necrosis and possible methods to control bark necrosis. Lesnícky Časopis For. J. 45 317–324. [in English with abstract in Slovakian],
Langer G. (2017). Collar Rots in forests of northwest Germany affected by ash dieback. Balt. For. 23 4–19.
Lazarev V., Jokanović B. (2007). Species of Nectria genus in beech forests. Bull. Fac. For. Univ. Banja Luka 7 65–82. [in Serbian with English abstract and summary],
Lobo A., Hansen J. K., McKinney L. V., Nielsen L. R., Kjær E. D. (2014). Genetic variation in dieback resistance: growth and survival of Fraxinus excelsior under the influence of Hymenoscyphus pseudoalbidus. Scand. J. For. Res. 29 519–526. 10.1080/02827581.2014.950603 DOI
Lortie M. (1969). Inoculations of Nectria galligena on northern hardwoods. Laval Univ. For. Res. Found. Contrib. No. 13 3–31.
Lygis V., Vasiliauskas R., Larsson K.-H., Stenlid J. (2005). Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand. J. For. Res. 20 337–346. 10.1080/02827580510036238 DOI
Mansfield J. W., Galambos N., Saville R. (2018). The use of ascospores of the dieback fungus Hymenoscyphus fraxineus for infection assays reveals a significant period of biotrophic interaction in penetrated ash cells. Plant Pathol. 67 1354–1361. 10.1111/ppa.12844 DOI
Marçais B., Husson C., Godart L., Caël O. (2016). Influence of site and stand factors on Hymenoscyphus fraxineus-induced basal lesions. Plant Pathol. 65 1452–1461. 10.1111/ppa.12542 DOI
Marinković P., Karadžić D. (1985). Nectria coccinea (Pers. ex Fr.) Fries., causal agent of beech die-back in Serbia. Zaštita Bilja 36 263–272. [in Serbian with English abstract and summary],
McKinney L. V., Nielsen L. R., Collinge D. B., Thomsen I. M., Hansen J. K., Kjær E. D. (2014). The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathol. 63 485–499. 10.1111/ppa.12196 DOI
Meyn R., Langer G. J., Gross A., Langer E. J. (2019). Fungal colonization patterns in necrotic rootstocks and stem bases of dieback-affected Fraxinus excelsior L. For. Pathol. 49:e12520 10.1111/efp.12520 DOI
Milenković I., Jung T., Stanivuković Z., Karadžić D. (2017). First report of Hymenoscyphus fraxineus on Fraxinus excelsior in Montenegro. For. Pathol. 47:e12359 10.1111/efp.12359 DOI
Muñoz F., Marçais B., Dufour J., Dowkiw A. (2016). Rising out of the ashes: additive genetic variation for susceptibility to Hymenoscyphus fraxineus in Fraxinus excelsior. Phytopathology 106 1535–1543. 10.1094/PHYTO-11-15-0284-R PubMed DOI
Nemesio-Gorriz M., McGuinness B., Grant J., Dowd L., Douglas G. C. (2019). Lenticel infection in Fraxinus excelsior shoots in the context of ash dieback. iForest 12 160–165. 10.3832/ifor2897-012 PubMed DOI
O’Donnell K., Cigelnik E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7 103–116. 10.1006/mpev.1996.0376 PubMed DOI
Orlikowski L. B., Ptaszek M., Rodziewicz A., Nechwatal J., Thinggaard K., Jung T. (2011). Phytophthora root and collar rot of mature Fraxinus excelsior in forest stands in Poland and Denmark. For. Pathol. 41 510–519. 10.1111/j.1439-0329.2011.00714.x DOI
Pautasso M., Aas G., Queloz V., Holdenrieder O. (2013). European ash (Fraxinus excelsior) dieback – a conservation biology challenge. Biol. Conserv. 158 37–49. 10.1016/j.biocon.2012.08.026 DOI
Perrin R. (1977). Le deprissement du hetre. Rev. For. Fr. XXIX–2, 101–126. 10.4267/2042/21124 DOI
Quaedvlieg W., Groenewald J. Z., de Jesús Yáñez-Morales M., Crous P. W. (2012). DNA barcoding of Mycosphaerella species of quarantine importance to Europe. Persoonia 29 101–115. 10.3767/003158512x661282 PubMed DOI PMC
Rehner S. A., Buckley E. A. (2005). Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97 84–98. 10.3852/mycologia.97.1.84 PubMed DOI
Salgado-Salazar C., Crouch A. J. (2019). Genome resources for the stem and bark canker pathogens Corinectria fuckeliana, Neonectria hederae and N. punicea. Plant Dis. 103 389–391. 10.1094/PDIS-05-18-0904-A PubMed DOI
Skovsgaard J. P., Thomsen I. M., Skovgaard I. M., Martinussen T. (2010). Associations among symptoms of dieback in even−aged stands of ash (Fraxinus excelsior L.). For. Pathol. 40 7–18. 10.1111/j.1439-0329.2009.00599.x DOI
Stanivuković Z., Karadžić D., Milenković I. (2014). The first record of the parasitic fungus Hymenoscyphus fraxineus (Kowalski) Baral, Queloz, Hosoya on the common ash in Bosnia and Herzegovina. Šumarstvo 3–4 19–34. [in Serbian with English abstract and summary],
Stener L.-G. (2013). Clonal differences in susceptibility to the dieback of Fraxinus excelsior in southern Sweden. Scand. J. For. Res. 28 205–216. 10.1080/02827581.2012.735699 DOI
Stener L.-G. (2018). Genetic evaluation of damage caused by ash dieback with emphasis on selection stability over time. For. Ecol. Manag. 409 584–592. 10.1016/j.foreco.2017.11.049 DOI
Treštić T., Mujezinović O. (2013). “Ash dieback in Bosnia and Herzegovina?! Program and abstracts,” in Poster at the COST Action FP1103 FRAXBACK, 4th Management Committee Meeting and Workshop “Frontiers in Ash Dieback Research”, September 4–6th, 2013, Malmö, 30–31.
Vemić A., Tomšovský M., Jung T., Milenković I. (2019). Pathogenicity of fungi associated with ash dieback symptoms of one-year old Fraxinus excelsior in Montenegro. For. Pathol. 49:e12539 10.1111/efp.12539 DOI
Vilgalys R., Hester M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172 4238–4246. 10.1128/jb.172.8.4238-4246.1990 PubMed DOI PMC
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications, eds Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (San Diego, CA: Academic Press; ), 315–322. 10.1016/b978-0-12-372180-8.50042-1 DOI