1,3-Dipolar Cycloaddition in the Preparation of New Fused Heterocyclic Compounds via Thermal Initiation
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26861268
PubMed Central
PMC6273826
DOI
10.3390/molecules21020187
PII: molecules21020187
Knihovny.cz E-resources
- Keywords
- 1,3-dipolar cycloaddition, 3-amino-benzo[b]furan-2-carbaldehyde, fused heterocycles, thermal initiation,
- MeSH
- Aldehydes chemical synthesis MeSH
- Azo Compounds chemistry MeSH
- Cycloaddition Reaction MeSH
- Furans chemical synthesis MeSH
- Molecular Conformation MeSH
- Thiosemicarbazones chemistry MeSH
- Hot Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aldehydes MeSH
- azomethine MeSH Browser
- Azo Compounds MeSH
- Furans MeSH
- Thiosemicarbazones MeSH
This paper describes the synthesis of precursors with a benzo[b]furan skeleton for the intramolecular 1,3-dipolar cycloaddition of azomethine ylides prepared from N-substituted 3-allyl-aminobenzo[b]furan-2-aldehydes and secondary amines derived from α-amino acid esters. Reactions were initiated by heating. The products consisted of four fused rings with three stereogenic centers. Their structure and stereochemistry were determined by NMR spectra and X-ray measurements.
See more in PubMed
Huisgen R. In: 1,3-Dipolar Cycloaddition Chemistry. Padwa A., editor. Volume 1 Wiley; New York, NY, USA: 1984.
Padwa A. Intramolecular 1,3-Dipolar Cycloaddition Reactions. Angew. Chem. Int. Ed. 1976;15:123–136. doi: 10.1002/anie.197601231. DOI
Harwood L., Vickers R.J. In: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products. Padwa A., Pearson W.H., editors. Wiley; New York, NY, USA: 2003.
Pospíšil J., Potáček M. Microwave-assisted solvent-free synthesis of hexahydro-chromeno[4,3-b]pyrroles. Eur. J. Org. Chem. 2004;3:710–716.
Pospíšil J., Potáček M. Microwave-assisted Solvent-free Intramolecular 1,3-Dipolar Cycloaddition Reactions Leading to Hexahydrochromeno[4,3-b] pyrroles: Scope and Limitations. Tetrahedron. 2007;63:337–346. doi: 10.1016/j.tet.2006.10.074. DOI
Potáček M., Pospíšil J. A Solvent-free Method for Substituted Imidazolidin-4-ones Synthesis. Heterocycles. 2004;63:1165–1174.
Neuschl M., Bogdal D., Potáček M. Microwave-Assisted Synthesis of Substituted Hexahydropyrrolo[3,2-c]quinolones. Molecules. 2007;12:49–59. PubMed PMC
Costa P.R.R., Sansano J.M., Cossío U., Barcellos J.C.F., Dias A.G., Nájera C., Arrieta A., Cózar A., Cossío F.P. Synthesis of Chromen[4,3-b]pyrrolidines by Intramolecular 1,3-Dipolar Cycloaddition of Azomethine Ylides: An Experimental and Computational Assessment of the Origin of Sterecontrol. Eur. J. Chem. 2015:4689–4698.
Nyerges M., Fejes I., Toke L. An intermolecular 1,3-dipolar cycloaddition approach to the tricyclic core of martinelline and martinellic acid. Tetrahedron Lett. 2000;41:7951–7954.
Rosini A., Budriesi R., Bixel M.G., Bolognesi M.L., Chiarini A., Hucho F., Krogsgaard-Larsen P., Mellor A., Minarini I.R., Tumiatti V., et al. Design, synthesis, and biological evaluation of symmetrically and unsymmetrically substituted methoctramine-related polyamines as muscular nicotinic receptor noncompetitive antagonists. J. Med. Chem. 1999;42:5212–5223. PubMed
Confalone P.N., Huie E.M. The Stabilized Iminium Ylide-Olefin [3+2]Cycloaddition Reaction. Total Synthesis of Sceletium Alkaloid A4. J. Am. Chem. Soc. 1984;106:7175–7178.
Arumugam N., Raghunathan R., Almansour A.I., Karama U. An efficient synthesis of highly functionalized novel chromeno[4,3-b]pyrroles and indolizino[6,7-b]indoles as potent antimicrobial and antioxidant agents. J. Med. Chem. Lett. 2012;22:1375–1379. PubMed
Choi D.H., Hwang J.W., Lee H.S., Yang D.M., Jun J.G. Highly effective total synthesis of benzofuran natural product egonol. Bull. Korean Chem. Soc. 2008;29:1594–1596.
Naik R., Harmalkar D.S., Xu X., Jang K., Lee K. Bioactive benzofuran derivatives: Moracins A–Z in medicinal chemistry. Eur. J. Med. Chem. 2015;90:379–393. PubMed
Basawaraj R., Goled S.N., Khandre O. Synthesis and biological activities of pyrazolino-benzofuro[3,2-d]pyrimidines. Indian J. Heterocycl. Chem. 2011;21:57–60.
Krawiecka M., Kuran B., Kossakowski J., Cieslak M., Kazmierczak-Baranska J., Krolewska K., Nawrot B. Synthesis and Cytotoxic Properties of Halogen and Aryl-/Heteroarylpiperazinyl Derivatives of Benzofurans. Anti-cancer Agents Med. Chem. 2015;15:115–121. doi: 10.2174/187152061501141204124709. PubMed DOI
Santana L., Teijera M., Uriarte E., Teran C., Linares B., Villar R., Laguna R., Cano E. AM1 theoretical study, synthesis and biological evaluation of some benzofuran analogues of anti-inflammatory arylalkanoic acids. Eur. J. Pharm. Sci. 1999;7:161–166. PubMed
Zwergel C., Valente S., Salvato A., Xu Z., Talhi O., Mai A., Silva A., Altucci L., Kirsch G. Novel benzofuran-chromone and -coumarine derivatives: Synthesis and biological activity in K562 human leukemia cells. Med. Chem. Commun. 2013;4:1571–1579.
Armarego W.L.F., Perin D.D. Purification of Laboratory Chemicals. 4th ed. Butterworth-Heinemann; Oxford, UK: 2000.
Sheldrick G.M. SHELXTL, Version 5.10. Bruker AXS Inc.; Madison, WI, USA: 1997.