Creating single-atom Pt-ceria catalysts by surface step decoration
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26908356
PubMed Central
PMC4770085
DOI
10.1038/ncomms10801
PII: ncomms10801
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Single-atom catalysts maximize the utilization of supported precious metals by exposing every single metal atom to reactants. To avoid sintering and deactivation at realistic reaction conditions, single metal atoms are stabilized by specific adsorption sites on catalyst substrates. Here we show by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces--monoatomic step edges. Pt segregation at steps leads to stable dispersions of single Pt(2+) ions in planar PtO4 moieties incorporating excess O atoms and contributing to oxygen storage capacity of ceria. We experimentally control the step density on our samples, to maximize the coverage of monodispersed Pt(2+) and demonstrate that step engineering and step decoration represent effective strategies for understanding and design of new single-atom catalysts.
Zobrazit více v PubMed
Yang X. et al.. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). PubMed
Flytzani-Stephanopoulos M. & Gates B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012). PubMed
Fu Q., Saltsburg H. & Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003). PubMed
Bruix A. et al.. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014). PubMed
Qiao B. et al.. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). PubMed
Novotný Z. et al.. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 108, 216103 (2012). PubMed
Parkinson G. S. et al.. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 12, 724–728 (2013). PubMed
Bliem R. et al.. Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 346, 1215–1218 (2014). PubMed
Li F., Li Y., Zeng X. C. & Chen Z. Exploration of high-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 5, 544–552 (2015).
Hatanaka M. et al.. Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt–O–Ce bond. Appl. Catal. B Environ. 99, 336–342 (2010).
Fiala R. et al.. Proton exchange membrane fuel cell made of magnetron sputtered Pt–CeOx and Pt–Co thin film catalysts. J. Power Sources 273, 105–109 (2015).
Gong X.-Q., Selloni A., Batzill M. & Diebold U. Steps on anatase TiO2(101). Nat. Mater. 5, 665–670 (2006). PubMed
Barth J. V, Costantini G. & Kern K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005). PubMed
Vang R. T. et al.. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nat. Mater. 4, 160–162 (2005). PubMed
Gong X., Selloni A., Dulub O., Jacobson P. & Diebold U. Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 130, 370–381 (2008). PubMed
Dvořa´k F. et al.. Adjusting morphology and surface reduction of CeO2(111) thin films on Cu(111). J. Phys. Chem. C 115, 7496–7503 (2011).
Duchoň T. et al.. Ordered phases of reduced ceria as epitaxial films on Cu(111). J. Phys. Chem. C 118, 357–365 (2014).
Zhou Y., Perket J. M. & Zhou J. Growth of Pt nanoparticles on reducible CeO2 (111) thin films: effect of nanostructures and redox properties of ceria. J. Phys. Chem. C 114, 11853–11860 (2010).
Shao X., Jerratsch J.-F., Nilius N. & Freund H.-J. Probing the 4f states of ceria by tunneling spectroscopy. Phys. Chem. Chem. Phys. 13, 12646–12651 (2011). PubMed
Lu J.-L., Gao H.-J., Shaikhutdinov S. & Freund H.-J. Morphology and defect structure of the CeO2(111) films grown on Ru(0001) as studied by scanning tunneling microscopy. Surf. Sci. 600, 5004–5010 (2006).
Zhou Y. & Zhou J. Interactions of Ni nanoparticles with reducible CeO2(111) thin films. J. Phys. Chem. C 116, 9544–9549 (2012).
Mullins D. R. et al.. Water dissociation on CeO2(100) and CeO2(111) thin films. J. Phys. Chem. C 116, 19419–19428 (2012).
Bruix A. et al.. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012). PubMed
Negreiros F. R. & Fabris S. Role of cluster morphology in the dynamics and reactivity of subnanometer Pt clusters supported on ceria surfaces. J. Phys. Chem. C 118, 21014–21020 (2014).
Kozlov S. M., Viñes F., Nilius N., Shaikhutdinov S. & Neyman K. M. Absolute surface step energies: accurate theoretical methods applied to ceria nanoislands. J. Phys. Chem. Lett. 3, 1956–1961 (2012).
Torbrügge S., Cranney M. & Reichling M. Morphology of step structures on CeO2(111). Appl. Phys. Lett. 93, 073112 (2008).
James T. E., Hemmingson S. L. & Campbell C. T. Energy of supported metal catalysts: from single atoms to large metal nanoparticles. ACS Catal. 5, 5673–5678 (2015).
James T. E., Hemmingson S. L., Ito T. & Campbell C. T. Energetics of Cu adsorption and adhesion onto reduced CeO2(111) surfaces by calorimetry. J. Phys. Chem. C 119, 17209–17217 (2015).
Colussi S. et al.. Nanofaceted Pd-O sites in Pd-Ce surface superstructures: Enhanced activity in catalytic combustion of methane. Angew. Chem. Int. Ed. 48, 8481–8484 (2009). PubMed
Kozlov S. M. & Neyman K. M. O vacancies on steps on the CeO2(111) surface. Phys. Chem. Chem. Phys. 16, 7823–7829 (2014). PubMed
Fiala R. et al.. Pt–CeOx thin film catalysts for PEMFC. Catal. Today 240, 236–241 (2015).
Hatanaka M. et al.. Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt. J. Catal. 266, 182–190 (2009).
Nagai Y. et al.. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. J. Catal. 242, 103–109 (2006).
Matolín V. et al.. Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering. Langmuir 26, 12824–12831 (2010). PubMed
Zhou J., Baddorf A. P., Mullins D. R. & Overbury S. H. Growth and characterization of Rh and Pd nanoparticles on oxidized and reduced CeOx(111) thin films by scanning tunneling microscopy. J. Phys. Chem. C 112, 9336–9345 (2008).
Zhou Y., Perket J. M. & Zhou J. Growth of Pt nanoparticles on reducible CeO2(111) thin films: effect of nanostructures and redox properties of ceria. J. Phys. Chem. C 114, 11853–11860 (2010).
Zhou Y. & Zhou J. Growth and sintering of Au−Pt nanoparticles on oxidized and reduced CeOx(111) thin films by scanning tunneling microscopy. J. Phys. Chem. Lett. 1, 609–615 (2010).
Sayle T. X. T., Parker S. C. & Sayle D. C. Oxidising CO to CO2 using ceria nanoparticles. Phys. Chem. Chem. Phys. 7, 2936–2941 (2005). PubMed
Castellani N. J., Branda M. M., Neyman K. M. & Illas F. Density functional theory study of the adsorption of Au atom on cerium oxide: effect of low-coordinated surface sites. J. Phys. Chem. C 113, 4948–4954 (2009).
Zambelli T., Wintterlin J., Trost J. & Ertl G. Identification of the ‘active sites' of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).
Matolín V. et al.. Water interaction with CeO2(111)/Cu(111) model catalyst surface. Catal. Today 181, 124–132 (2012).
Mullins D. R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 70, 42–85 (2015).
Cococcioni M. & de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).
Perdew J. P. J., Burke K. & Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). PubMed
Giannozzi P. et al.. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). PubMed
Fabris S., de Gironcoli S., Baroni S., Vicario G. & Balducci G. Taming multiple valency with density functionals: a case study of defective ceria. Phys. Rev. B 71, 041102 (2005).
Fabris S., Vicario G., Balducci G., De Gironcoli S. & Baroni S. Electronic and atomistic structures of clean and reduced ceria surfaces. J. Phys. Chem. B 109, 22860–22867 (2005). PubMed