CO oxidation by Pt2/Fe3O4: Metastable dimer and support configurations facilitate lattice oxygen extraction
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35363523
PubMed Central
PMC10938578
DOI
10.1126/sciadv.abn4580
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Heterogeneous catalysts based on subnanometer metal clusters often exhibit strongly size-dependent properties, and the addition or removal of a single atom can make all the difference. Identifying the most active species and deciphering the reaction mechanism is extremely difficult, however, because it is often not clear how the catalyst evolves in operando. Here, we use a combination of atomically resolved scanning probe microscopies, spectroscopic techniques, and density functional theory (DFT)-based calculations to study CO oxidation by a model Pt/Fe3O4(001) "single-atom" catalyst. We demonstrate that (PtCO)2 dimers, formed dynamically through the agglomeration of mobile Pt-carbonyl species, catalyze a reaction involving the oxide support to form CO2. Pt2 dimers produce one CO2 molecule before falling apart into two adatoms, releasing the second CO. Olattice extraction only becomes facile when both the Pt-dimer and the Fe3O4 support can access metastable configurations, suggesting that substantial, concerted rearrangements of both cluster and support must be considered for reactions occurring at elevated temperature.
Alma Mater Studiorum Università di Bologna Bologna Italy
Computational Materials Physics University of Vienna Vienna Austria
Zobrazit více v PubMed
Liu L., Corma A., Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). PubMed PMC
Vajda S., Pellin M. J., Greeley J. P., Marshall C. L., Curtiss L. A., Ballentine G. A., Elam J. W., Catillon-Mucherie S., Redfern P. C., Mehmood F., Zapol P., Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009). PubMed
Lei Y., Mehmood F., Lee S., Greeley J., Lee B., Seifert S., Winans R. E., Elam J. W., Meyer R. J., Redfern P. C., Teschner D., Schlögl R., Pellin M. J., Curtiss L. A., Vajda S., Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010). PubMed
Yoon B., Häkkinen H., Landman U., Wörz A. S., Antonietti J. M., Abbet S.´., Judai K., Heiz U., Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005). PubMed
Abbet S., Sanchez A., Heiz U., Schneider W. D., Ferrari A. M., Pacchioni G., Rösch N., Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough! J. Am. Chem. Soc. 122, 3453–3457 (2000).
Rong H., Ji S., Zhang J., Wang D., Li Y., Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020). PubMed PMC
Corma A., Concepción P., Boronat M., Sabater M. J., Navas J., Yacaman M. J., Larios E., Posadas A., López-Quintela M. A., Buceta D., Mendoza E., Guilera G., Mayoral A., Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013). PubMed
Baxter E. T., Ha M.-A., Cass A. C., Alexandrova A. N., Anderson S. L., Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: Strong cluster size dependence linked to preferred catalyst morphologies. ACS Catal. 7, 3322–3335 (2017).
Kaden W. E., Wu T., Kunkel W. A., Anderson S. L., Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826–829 (2009). PubMed
Tyo E. C., Vajda S., Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015). PubMed
Vajda S., White M. G., Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015).
Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). PubMed
Lin J., Wang A., Qiao B., Liu X., Yang X., Wang X., Liang J., Li J., Liu J., Zhang T., Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013). PubMed
Yang X.-F., Wang A., Qiao B., Li J., Liu J., Zhang T., Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). PubMed
DeRita L., Resasco J., Dai S., Boubnov A., Thang H. V., Hoffman A. S., Ro I., Graham G. W., Bare S. R., Pacchioni G., Pan X., Christopher P., Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019). PubMed
Ro I., Xu M., Graham G. W., Pan X., Christopher P., Synthesis of heteroatom Rh–ReOx atomically dispersed species on Al2O3 and their tunable catalytic reactivity in ethylene hydroformylation. ACS Catal. 9, 10899–10912 (2019).
Shan J., Li M., Allard L. F., Lee S., Flytzani-Stephanopoulos M., Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017). PubMed
Gates B. C., Flytzani-Stephanopoulos M., Dixon D. A., Katz A., Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research. Cat. Sci. Technol. 7, 4259–4275 (2017).
Hulva J., Meier M., Bliem R., Jakub Z., Kraushofer F., Schmid M., Diebold U., Franchini C., Parkinson G. S., Unraveling CO adsorption on model single-atom catalysts. Science 371, 375–379 (2021). PubMed
Cui X., Li W., Ryabchuk P., Junge K., Beller M., Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).
Chen Z., Vorobyeva E., Mitchell S., Fako E., Ortuño M. A., López N., Collins S. M., Midgley P. A., Richard S., Vilé G., Pérez-Ramírez J., A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018). PubMed
Ding K., Gulec A., Johnson A. M., Schweitzer N. M., Stucky G. D., Marks L. D., Stair P. C., Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015). PubMed
Asokan C., DeRita L., Christopher P., Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts. Chin. J. Catal. 38, 1473–1480 (2017).
Fu Q., Saltsburg H., Flytzani-Stephanopoulos M., Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003). PubMed
Aleksandrov H. A., Neyman K. M., Hadjiivanov K. I., Vayssilov G. N., Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? Phys. Chem. Chem. Phys. 18, 22108–22121 (2016). PubMed
Duan S., Wang R., Liu J., Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology 29, 204002 (2018). PubMed
Jakub Z., Hulva J., Ryan P. T. P., Duncan D. A., Payne D. J., Bliem R., Ulreich M., Hofegger P., Kraushofer F., Meier M., Schmid M., Diebold U., Parkinson G. S., Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe3O4(001) model catalyst. Nanoscale 12, 5866–5875 (2020). PubMed
Liang J., Yu Q., Yang X., Zhang T., Li J., A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res. 11, 1599–1611 (2018).
Lu Y., Wang J., Yu L., Kovarik L., Zhang X., Hoffman A. S., Gallo A., Bare S. R., Sokaras D., Kroll T., Dagle V., Xin H., Karim A. M., Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019).
Wang J., Lu Y., Liu L., Yu L., Yang C., Delferro M., Hoffman A. S., Bare S. R., Karim A. M., Xin H., Catalytic CO Oxidation on MgAl2O4-supported iridium single atoms: Ligand configuration and site geometry. J. Phys. Chem. C 125, 11380–11390 (2021).
Dvořák F., Farnesi Camellone M., Tovt A., Tran N. D., Negreiros F. R., Vorokhta M., Skála T., Matolínová I., Mysliveček J., Matolín V., Fabris S., Creating single-atom Pt-ceria catalysts by surface step decoration. Nat. Commun. 7, 10801–10801 (2016). PubMed PMC
Therrien A. J., Hensley A. J. R., Marcinkowski M. D., Zhang R., Lucci F. R., Coughlin B., Schilling A. C., McEwen J. S., Sykes E. C. H., An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).
Therrien A. J., Groden K., Hensley A. J. R., Schilling A. C., Hannagan R. T., Marcinkowski M. D., Pronschinske A., Lucci F. R., Sykes E. C. H., McEwen J. S., Water activation by single Pt atoms supported on a Cu2O thin film. J. Catal. 364, 166–173 (2018).
Jakub Z., Hulva J., Mirabella F., Kraushofer F., Meier M., Bliem R., Diebold U., Parkinson G. S., Nickel doping enhances the reactivity of Fe3O4(001) to water. J. Phys. Chem. C 123, 15038–15045 (2019).
Kyriakou G., Boucher M. B., Jewell A. D., Lewis E. A., Lawton T. J., Baber A. E., Tierney H. L., Flytzani-Stephanopoulos M., Sykes E. C. H., Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012). PubMed
Bliem R., McDermott E., Ferstl P., Setvin M., Gamba O., Pavelec J., Schneider M. A., Schmid M., Diebold U., Blaha P., Hammer L., Parkinson G. S., Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 346, 1215–1218 (2014). PubMed
Parkinson G. S., Iron oxide surfaces. Surf. Sci. Rep. 71, 272–365 (2016).
Bliem R., van der Hoeven J., Zavodny A., Gamba O., Pavelec J., de Jongh P. E., Schmid M., Diebold U., Parkinson G. S., An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4 model catalyst. Angew. Chem. Int. Ed. 54, 13999–14002 (2015). PubMed
Bliem R., van der Hoeven J. E. S., Hulva J., Pavelec J., Gamba O., de Jongh P. E., Schmid M., Blaha P., Diebold U., Parkinson G. S., Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface. Proc. Natl. Acad. Sci. U.S.A. 113, 8921–8926 (2016). PubMed PMC
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009). PubMed
de Oteyza D. G., Gorman P., Chen Y. C., Wickenburg S., Riss A., Mowbray D. J., Etkin G., Pedramrazi Z., Tsai H. Z., Rubio A., Crommie M. F., Fischer F. R., Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013). PubMed
Emmrich M., Huber F., Pielmeier F., Welker J., Hofmann T., Schneiderbauer M., Meuer D., Polesya S., Mankovsky S., Ködderitzsch D., Ebert H., Giessibl F. J., Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348, 308–311 (2015). PubMed
Weymouth A. J., Hofmann T., Giessibl F. J., Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014). PubMed
Hapala P., Kichin G., Wagner C., Tautz F. S., Temirov R., Jelínek P., Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).
Nie S., Starodub E., Monti M., Siegel D. A., Vergara L., el Gabaly F., Bartelt N. C., de la Figuera J., McCarty K. F., Insight into magnetite’s redox catalysis from observing surface morphology during oxidation. J. Am. Chem. Soc. 135, 10091–10098 (2013). PubMed
Pavelec J., Hulva J., Halwidl D., Bliem R., Gamba O., Jakub Z., Brunbauer F., Schmid M., Diebold U., Parkinson G. S., A multi-technique study of CO2 adsorption on Fe3O4 magnetite. J. Chem. Phys. 146, 014701 (2017). PubMed
Henkelman G., Jónsson H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).
Zhai H., Alexandrova A. N., Fluxionality of catalytic clusters: When it matters and how to address it. ACS Catal. 7, 1905–1911 (2017).
Jakub Z., Hulva J., Meier M., Bliem R., Kraushofer F., Setvin M., Schmid M., Diebold U., Franchini C., Parkinson G. S., Local structure and coordination define adsorption in a model Ir1/Fe3O4 single-atom catalyst. Angew. Chem. Int. Ed. 58, 13961–13968 (2019). PubMed PMC
Gamba O., Hulva J., Pavelec J., Bliem R., Schmid M., Diebold U., Parkinson G. S., The role of surface defects in the adsorption of methanol on Fe3O4(001). Top. Catal. 60, 420–430 (2017). PubMed PMC
Sterrer M., Yulikov M., Risse T., Freund H. J., Carrasco J., Illas F., di Valentin C., Giordano L., Pacchioni G., When the reporter induces the effect: Unusual IR spectra of CO on Au1/MgO(001)/Mo(001). Angew. Chem. Int. Ed. 45, 2633–2635 (2006). PubMed
Huber F., Giessibl F. J., Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 88, 073702 (2017). PubMed
Setvín M., Javorský J., Turčinková D., Matolínová I., Sobotík P., Kocán P., Ošt’ádal I., Ultrasharp tungsten tips—Characterization and nondestructive cleaning. Ultramicroscopy 113, 152–157 (2012).
Kresse G., Hafner J., Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993). PubMed
Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Blöchl P. E., Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). PubMed
Dion M., Rydberg H., Schröder E., Langreth D. C., Lundqvist B. I., Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004). PubMed
Klimeš J., Bowler D. R., Michaelides A., Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009). PubMed
Kiejna A., Ossowski T., Pabisiak T., Surface properties of the clean and Au/Pd covered Fe3O4(111): DFT and DFT+U study. Phys. Rev. B 85, 125414 (2012).
Bernal-Villamil I., Gallego S., Charge order at magnetite Fe3O4(0 0 1): Surface and Verwey phase transitions. J. Phys. Condens. Matter 27, 012001 (2014). PubMed
Eyring H., The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935).
Campbell C. T., Sprowl L. H., Árnadóttir L., Equilibrium constants and rate constants for adsorbates: Two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models. J. Phys. Chem. C 120, 10283–10297 (2016).
Stoltze P., Microkinetic simulation of catalytic reactions. Prog. Surf. Sci. 65, 65–150 (2000).