CO oxidation by Pt2/Fe3O4: Metastable dimer and support configurations facilitate lattice oxygen extraction

. 2022 Apr ; 8 (13) : eabn4580. [epub] 20220401

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35363523

Heterogeneous catalysts based on subnanometer metal clusters often exhibit strongly size-dependent properties, and the addition or removal of a single atom can make all the difference. Identifying the most active species and deciphering the reaction mechanism is extremely difficult, however, because it is often not clear how the catalyst evolves in operando. Here, we use a combination of atomically resolved scanning probe microscopies, spectroscopic techniques, and density functional theory (DFT)-based calculations to study CO oxidation by a model Pt/Fe3O4(001) "single-atom" catalyst. We demonstrate that (PtCO)2 dimers, formed dynamically through the agglomeration of mobile Pt-carbonyl species, catalyze a reaction involving the oxide support to form CO2. Pt2 dimers produce one CO2 molecule before falling apart into two adatoms, releasing the second CO. Olattice extraction only becomes facile when both the Pt-dimer and the Fe3O4 support can access metastable configurations, suggesting that substantial, concerted rearrangements of both cluster and support must be considered for reactions occurring at elevated temperature.

Zobrazit více v PubMed

Liu L., Corma A., Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). PubMed PMC

Vajda S., Pellin M. J., Greeley J. P., Marshall C. L., Curtiss L. A., Ballentine G. A., Elam J. W., Catillon-Mucherie S., Redfern P. C., Mehmood F., Zapol P., Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009). PubMed

Lei Y., Mehmood F., Lee S., Greeley J., Lee B., Seifert S., Winans R. E., Elam J. W., Meyer R. J., Redfern P. C., Teschner D., Schlögl R., Pellin M. J., Curtiss L. A., Vajda S., Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010). PubMed

Yoon B., Häkkinen H., Landman U., Wörz A. S., Antonietti J. M., Abbet S.´., Judai K., Heiz U., Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005). PubMed

Abbet S., Sanchez A., Heiz U., Schneider W. D., Ferrari A. M., Pacchioni G., Rösch N., Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough! J. Am. Chem. Soc. 122, 3453–3457 (2000).

Rong H., Ji S., Zhang J., Wang D., Li Y., Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020). PubMed PMC

Corma A., Concepción P., Boronat M., Sabater M. J., Navas J., Yacaman M. J., Larios E., Posadas A., López-Quintela M. A., Buceta D., Mendoza E., Guilera G., Mayoral A., Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013). PubMed

Baxter E. T., Ha M.-A., Cass A. C., Alexandrova A. N., Anderson S. L., Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: Strong cluster size dependence linked to preferred catalyst morphologies. ACS Catal. 7, 3322–3335 (2017).

Kaden W. E., Wu T., Kunkel W. A., Anderson S. L., Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826–829 (2009). PubMed

Tyo E. C., Vajda S., Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015). PubMed

Vajda S., White M. G., Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015).

Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). PubMed

Lin J., Wang A., Qiao B., Liu X., Yang X., Wang X., Liang J., Li J., Liu J., Zhang T., Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013). PubMed

Yang X.-F., Wang A., Qiao B., Li J., Liu J., Zhang T., Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). PubMed

DeRita L., Resasco J., Dai S., Boubnov A., Thang H. V., Hoffman A. S., Ro I., Graham G. W., Bare S. R., Pacchioni G., Pan X., Christopher P., Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019). PubMed

Ro I., Xu M., Graham G. W., Pan X., Christopher P., Synthesis of heteroatom Rh–ReOx atomically dispersed species on Al2O3 and their tunable catalytic reactivity in ethylene hydroformylation. ACS Catal. 9, 10899–10912 (2019).

Shan J., Li M., Allard L. F., Lee S., Flytzani-Stephanopoulos M., Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017). PubMed

Gates B. C., Flytzani-Stephanopoulos M., Dixon D. A., Katz A., Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research. Cat. Sci. Technol. 7, 4259–4275 (2017).

Hulva J., Meier M., Bliem R., Jakub Z., Kraushofer F., Schmid M., Diebold U., Franchini C., Parkinson G. S., Unraveling CO adsorption on model single-atom catalysts. Science 371, 375–379 (2021). PubMed

Cui X., Li W., Ryabchuk P., Junge K., Beller M., Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

Chen Z., Vorobyeva E., Mitchell S., Fako E., Ortuño M. A., López N., Collins S. M., Midgley P. A., Richard S., Vilé G., Pérez-Ramírez J., A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018). PubMed

Ding K., Gulec A., Johnson A. M., Schweitzer N. M., Stucky G. D., Marks L. D., Stair P. C., Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015). PubMed

Asokan C., DeRita L., Christopher P., Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts. Chin. J. Catal. 38, 1473–1480 (2017).

Fu Q., Saltsburg H., Flytzani-Stephanopoulos M., Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003). PubMed

Aleksandrov H. A., Neyman K. M., Hadjiivanov K. I., Vayssilov G. N., Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? Phys. Chem. Chem. Phys. 18, 22108–22121 (2016). PubMed

Duan S., Wang R., Liu J., Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology 29, 204002 (2018). PubMed

Jakub Z., Hulva J., Ryan P. T. P., Duncan D. A., Payne D. J., Bliem R., Ulreich M., Hofegger P., Kraushofer F., Meier M., Schmid M., Diebold U., Parkinson G. S., Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe3O4(001) model catalyst. Nanoscale 12, 5866–5875 (2020). PubMed

Liang J., Yu Q., Yang X., Zhang T., Li J., A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res. 11, 1599–1611 (2018).

Lu Y., Wang J., Yu L., Kovarik L., Zhang X., Hoffman A. S., Gallo A., Bare S. R., Sokaras D., Kroll T., Dagle V., Xin H., Karim A. M., Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019).

Wang J., Lu Y., Liu L., Yu L., Yang C., Delferro M., Hoffman A. S., Bare S. R., Karim A. M., Xin H., Catalytic CO Oxidation on MgAl2O4-supported iridium single atoms: Ligand configuration and site geometry. J. Phys. Chem. C 125, 11380–11390 (2021).

Dvořák F., Farnesi Camellone M., Tovt A., Tran N. D., Negreiros F. R., Vorokhta M., Skála T., Matolínová I., Mysliveček J., Matolín V., Fabris S., Creating single-atom Pt-ceria catalysts by surface step decoration. Nat. Commun. 7, 10801–10801 (2016). PubMed PMC

Therrien A. J., Hensley A. J. R., Marcinkowski M. D., Zhang R., Lucci F. R., Coughlin B., Schilling A. C., McEwen J. S., Sykes E. C. H., An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).

Therrien A. J., Groden K., Hensley A. J. R., Schilling A. C., Hannagan R. T., Marcinkowski M. D., Pronschinske A., Lucci F. R., Sykes E. C. H., McEwen J. S., Water activation by single Pt atoms supported on a Cu2O thin film. J. Catal. 364, 166–173 (2018).

Jakub Z., Hulva J., Mirabella F., Kraushofer F., Meier M., Bliem R., Diebold U., Parkinson G. S., Nickel doping enhances the reactivity of Fe3O4(001) to water. J. Phys. Chem. C 123, 15038–15045 (2019).

Kyriakou G., Boucher M. B., Jewell A. D., Lewis E. A., Lawton T. J., Baber A. E., Tierney H. L., Flytzani-Stephanopoulos M., Sykes E. C. H., Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012). PubMed

Bliem R., McDermott E., Ferstl P., Setvin M., Gamba O., Pavelec J., Schneider M. A., Schmid M., Diebold U., Blaha P., Hammer L., Parkinson G. S., Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 346, 1215–1218 (2014). PubMed

Parkinson G. S., Iron oxide surfaces. Surf. Sci. Rep. 71, 272–365 (2016).

Bliem R., van der Hoeven J., Zavodny A., Gamba O., Pavelec J., de Jongh P. E., Schmid M., Diebold U., Parkinson G. S., An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4 model catalyst. Angew. Chem. Int. Ed. 54, 13999–14002 (2015). PubMed

Bliem R., van der Hoeven J. E. S., Hulva J., Pavelec J., Gamba O., de Jongh P. E., Schmid M., Blaha P., Diebold U., Parkinson G. S., Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface. Proc. Natl. Acad. Sci. U.S.A. 113, 8921–8926 (2016). PubMed PMC

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009). PubMed

de Oteyza D. G., Gorman P., Chen Y. C., Wickenburg S., Riss A., Mowbray D. J., Etkin G., Pedramrazi Z., Tsai H. Z., Rubio A., Crommie M. F., Fischer F. R., Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013). PubMed

Emmrich M., Huber F., Pielmeier F., Welker J., Hofmann T., Schneiderbauer M., Meuer D., Polesya S., Mankovsky S., Ködderitzsch D., Ebert H., Giessibl F. J., Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348, 308–311 (2015). PubMed

Weymouth A. J., Hofmann T., Giessibl F. J., Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014). PubMed

Hapala P., Kichin G., Wagner C., Tautz F. S., Temirov R., Jelínek P., Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

Nie S., Starodub E., Monti M., Siegel D. A., Vergara L., el Gabaly F., Bartelt N. C., de la Figuera J., McCarty K. F., Insight into magnetite’s redox catalysis from observing surface morphology during oxidation. J. Am. Chem. Soc. 135, 10091–10098 (2013). PubMed

Pavelec J., Hulva J., Halwidl D., Bliem R., Gamba O., Jakub Z., Brunbauer F., Schmid M., Diebold U., Parkinson G. S., A multi-technique study of CO2 adsorption on Fe3O4 magnetite. J. Chem. Phys. 146, 014701 (2017). PubMed

Henkelman G., Jónsson H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

Zhai H., Alexandrova A. N., Fluxionality of catalytic clusters: When it matters and how to address it. ACS Catal. 7, 1905–1911 (2017).

Jakub Z., Hulva J., Meier M., Bliem R., Kraushofer F., Setvin M., Schmid M., Diebold U., Franchini C., Parkinson G. S., Local structure and coordination define adsorption in a model Ir1/Fe3O4 single-atom catalyst. Angew. Chem. Int. Ed. 58, 13961–13968 (2019). PubMed PMC

Gamba O., Hulva J., Pavelec J., Bliem R., Schmid M., Diebold U., Parkinson G. S., The role of surface defects in the adsorption of methanol on Fe3O4(001). Top. Catal. 60, 420–430 (2017). PubMed PMC

Sterrer M., Yulikov M., Risse T., Freund H. J., Carrasco J., Illas F., di Valentin C., Giordano L., Pacchioni G., When the reporter induces the effect: Unusual IR spectra of CO on Au1/MgO(001)/Mo(001). Angew. Chem. Int. Ed. 45, 2633–2635 (2006). PubMed

Huber F., Giessibl F. J., Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 88, 073702 (2017). PubMed

Setvín M., Javorský J., Turčinková D., Matolínová I., Sobotík P., Kocán P., Ošt’ádal I., Ultrasharp tungsten tips—Characterization and nondestructive cleaning. Ultramicroscopy 113, 152–157 (2012).

Kresse G., Hafner J., Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993). PubMed

Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Blöchl P. E., Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). PubMed

Dion M., Rydberg H., Schröder E., Langreth D. C., Lundqvist B. I., Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004). PubMed

Klimeš J., Bowler D. R., Michaelides A., Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009). PubMed

Kiejna A., Ossowski T., Pabisiak T., Surface properties of the clean and Au/Pd covered Fe3O4(111): DFT and DFT+U study. Phys. Rev. B 85, 125414 (2012).

Bernal-Villamil I., Gallego S., Charge order at magnetite Fe3O4(0 0 1): Surface and Verwey phase transitions. J. Phys. Condens. Matter 27, 012001 (2014). PubMed

Eyring H., The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935).

Campbell C. T., Sprowl L. H., Árnadóttir L., Equilibrium constants and rate constants for adsorbates: Two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models. J. Phys. Chem. C 120, 10283–10297 (2016).

Stoltze P., Microkinetic simulation of catalytic reactions. Prog. Surf. Sci. 65, 65–150 (2000).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace