Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
DK033301
NIDDK NIH HHS - United States
R01 DK060022
NIDDK NIH HHS - United States
P30 DK056341
NIDDK NIH HHS - United States
R01 DK033301
NIDDK NIH HHS - United States
DK097608
NIDDK NIH HHS - United States
DK60022
NIDDK NIH HHS - United States
P30 DK020579
NIDDK NIH HHS - United States
R01 DK097608
NIDDK NIH HHS - United States
P30DK-020579
NIDDK NIH HHS - United States
PubMed
26912395
PubMed Central
PMC4808775
DOI
10.1194/jlr.m066530
PII: S0022-2275(20)35421-3
Knihovny.cz E-zdroje
- Klíčová slova
- adipose tissue, cyclooxygenase, eicosanoids, extracellular signal-regulated kinase, fatty acid, inflammation, lipase,
- MeSH
- aktivace enzymů MeSH
- buňky 3T3-L1 MeSH
- chemotaxe * MeSH
- cyklooxygenasa 1 genetika MeSH
- cyklooxygenasa 2 genetika MeSH
- dinoproston metabolismus MeSH
- fosfolipasy A2, skupina IV metabolismus MeSH
- kyselina arachidonová metabolismus MeSH
- lipolýza * MeSH
- makrofágy cytologie MeSH
- myši MeSH
- omezení příjmu potravy MeSH
- RAW 264.7 buňky MeSH
- regulace genové exprese enzymů MeSH
- tukové buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cyklooxygenasa 1 MeSH
- cyklooxygenasa 2 MeSH
- dinoproston MeSH
- fosfolipasy A2, skupina IV MeSH
- kyselina arachidonová MeSH
Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.
Zobrazit více v PubMed
Frühbeck G., Méndez-Giménez L., Fernández-Formoso J. A., Fernández S., and Rodriguez A.. 2014. Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27: 63–93. PubMed
Nielsen T. S., Jessen N., Jorgensen J. O., Moller N., and Lund S.. 2014. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52: R199–R222. PubMed
Huh J. Y., Park Y. J., Ham M., and Kim J. B.. 2014. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells. 37: 365–371. PubMed PMC
Fasshauer M., and Bluher M.. 2015. Adipokines in health and disease. Trends Pharmacol. Sci. 36: 461–470. PubMed
Hill A. A., Reid Bolus W., and Hasty A. H.. 2014. A decade of progress in adipose tissue macrophage biology. Immunol. Rev. 262: 134–152. PubMed PMC
Cinti S., Mitchell G., Barbatelli G., Murano I., Ceresi E., Faloia E., Wang S., Fortier M., Greenberg A. S., and Obin M. S.. 2005. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46: 2347–2355. PubMed
Ortega Martinez de Victoria E., Xu X., Koska J., Francisco A. M., Scalise M., Ferrante A. W. Jr., and Krakoff J.. 2009. Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy Pima Indians. Diabetes. 58: 385–393. PubMed PMC
Kosteli A., Sugaru E., Haemmerle G., Martin J. F., Lei J., Zechner R., and Ferrante A. W. Jr. 2010. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120: 3466–3479. PubMed PMC
Capel F., Klimcakova E., Viguerie N., Roussel B., Vitkova M., Kovacikova M., Polak J., Kovacova Z., Galitzky J., Maoret J. J., et al. . 2009. Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes. 58: 1558–1567. PubMed PMC
Michaud A., Pelletier M., Noel S., Bouchard C., and Tchernof A.. 2013. Markers of macrophage infiltration and measures of lipolysis in human abdominal adipose tissues. Obesity (Silver Spring). 21: 2342–2349. PubMed
Shi H., Kokoeva M. V., Inouye K., Tzameli I., Yin H., and Flier J. S.. 2006. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116: 3015–3025. PubMed PMC
Suganami T., Tanimoto-Koyama K., Nishida J., Itoh M., Yuan X., Mizuarai S., Kotani H., Yamaoka S., Miyake K., Aoe S., et al. . 2007. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler. Thromb. Vasc. Biol. 27: 84–91. PubMed
Zhou D., Samovski D., Okunade A. L., Stahl P. D., Abumrad N. A., and Su X.. 2012. CD36 level and trafficking are determinants of lipolysis in adipocytes. FASEB J. 26: 4733–4742. PubMed PMC
Liu Y., Zhou D., Abumrad N. A., and Su X.. 2010. ADP-ribosylation factor 6 modulates adrenergic stimulated lipolysis in adipocytes. Am. J. Physiol. Cell Physiol. 298: C921–C928. PubMed PMC
Patsouris D., Neels J. G., Fan W., Li P-P., Nguyen M. T. A., and Olefsky J. M.. 2009. Glucocorticoids and thiazolidinediones interfere with adipocyte-mediated macrophage chemotaxis and recruitment. J. Biol. Chem. 284: 31223–31235. PubMed PMC
Zeghari N., Vidal H., Younsi M., Ziegler O., Drouin P., and Donner M.. 2000. Adipocyte membrane phospholipids and PPAR-gamma expression in obese women: relationship to hyperinsulinemia. Am. J. Physiol. Endocrinol. Metab. 279: E736–E743. PubMed
Balsinde J., Winstead M. V., and Dennis E. A.. 2002. Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett. 531: 2–6. PubMed
Wolf G. 2009. Adipose-specific phospholipase as regulator of adiposity. Nutr. Rev. 67: 551–554. PubMed
Pavicevic Z., Leslie C. C., and Malik K. U.. 2008. cPLA2 phosphorylation at serine-515 and serine-505 is required for arachidonic acid release in vascular smooth muscle cells. J. Lipid Res. 49: 724–737. PubMed
Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., and Davis R. J.. 1993. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 72: 269–278. PubMed
Bertolini A., Ottani A., and Sandrini M.. 2002. Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr. Med. Chem. 9: 1033–1043. PubMed
Tang E. H., Cai Y., Wong C. K., Rocha V. Z., Sukhova G. K., Shimizu K., Xuan G., Vanhoutte P. M., Libby P., and Xu A.. 2015. Activation of prostaglandin E2–EP4 signaling reduces chemokine production in adipose tissue. J. Lipid Res. 56: 358–368. PubMed PMC
Red Eagle A., and Chawla A.. 2010. In obesity and weight loss, all roads lead to the mighty macrophage. J. Clin. Invest. 120: 3437–3440. PubMed PMC
Trayhurn P., and Wood I. S.. 2005. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem. Soc. Trans. 33: 1078–1081. PubMed
Guo L., Zhou D., Pryse K. M., Okunade A. L., and Su X.. 2010. Fatty acid 2-hydroxylase mediates diffusional mobility of Raft-associated lipids, GLUT4 level, and lipogenesis in 3T3–L1 adipocytes. J. Biol. Chem. 285: 25438–25447. PubMed PMC
Lumeng C. N., Deyoung S. M., Bodzin J. L., and Saltiel A. R.. 2007. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 56: 16–23. PubMed
Weisberg S. P., McCann D., Desai M., Rosenbaum M., Leibel R. L., and Ferrante A. W. Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112: 1796–1808. PubMed PMC
Iyer A., Fairlie D. P., Prins J. B., Hammock B. D., and Brown L.. 2010. Inflammatory lipid mediators in adipocyte function and obesity. Nat. Rev. Endocrinol. 6: 71–82. PubMed
Shimizu T. 2009. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49: 123–150. PubMed
Strong P., Coleman R. A., and Humphrey P. P.. 1992. Prostanoid-induced inhibition of lipolysis in rat isolated adipocytes: probable involvement of EP3 receptors. Prostaglandins. 43: 559–566. PubMed
Frolov A., Yang L., Dong H., Hammock B. D., and Crofford L. J.. 2013. Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. Prostaglandins Leukot. Essent. Fatty Acids. 89: 351–358. PubMed PMC
Sokolowska M., Chen L. Y., Liu Y., Martinez-Anton A., Qi H. Y., Logun C., Alsaaty S., Park Y. H., Kastner D. L., Chae J. J., et al. . 2015. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J. Immunol. 194: 5472–5487. PubMed PMC
Kalinski P. 2012. Regulation of immune responses by prostaglandin E2. J. Immunol. 188: 21–28. PubMed PMC
Lumeng C. N., Bodzin J. L., and Saltiel A. R.. 2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117: 175–184. PubMed PMC
Norris P. C., Gosselin D., Reichart D., Glass C. K., and Dennis E. A.. 2014. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation. Proc. Natl. Acad. Sci. USA. 111: 12746–12751. PubMed PMC
Muthalif M. M., Benter I. F., Karzoun N., Fatima S., Harper J., Uddin M. R., and Malik K. U.. 1998. 20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin-dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA. 95: 12701–12706. PubMed PMC
Vane J. R., Bakhle Y. S., and Botting R. M.. 1998. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38: 97–120. PubMed
Klein T., Shephard P., Kleinert H., and Komhoff M.. 2007. Regulation of cyclooxygenase-2 expression by cyclic AMP. Biochim. Biophys. Acta. 1773: 1605–1618. PubMed
Sun H., Sheveleva E., and Chen Q. M.. 2008. Corticosteroids induce cyclooxygenase 1 expression in cardiomyocytes: role of glucocorticoid receptor and Sp3 transcription factor. Mol. Endocrinol. 22: 2076–2084. PubMed PMC
Anderson G. D., Hauser S. D., McGarity K. L., Bremer M. E., Isakson P. C., and Gregory S. A.. 1996. Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J. Clin. Invest. 97: 2672–2679. PubMed PMC
Scott K. F., Sajinovic M., Hein J., Nixdorf S., Galettis P., Liauw W., de Souza P., Dong Q., Graham G. G., and Russell P. J.. 2010. Emerging roles for phospholipase A2 enzymes in cancer. Biochimie. 92: 601–610. PubMed
Jeong W. C., Kim K. J., Ju H. W., Back H. K., Kim H. K., Im S. Y., and Lee H. K.. 2010. Cytoplasmic phospholipase A2 metabolites play a critical role in pulmonary tumor metastasis in mice. Anticancer Res. 30: 3421–3427. PubMed
Zhang Q., Wang D., Singh N. K., Kundumani-Sridharan V., Gadiparthi L., Rao Ch. M., and Rao G. N.. 2011. Activation of cytosolic phospholipase A2 downstream of the Src-phospholipase D1 (PLD1)-protein kinase C gamma (PKCgamma) signaling axis is required for hypoxia-induced pathological retinal angiogenesis. J. Biol. Chem. 286: 22489–22498. PubMed PMC