Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment

. 2016 Apr ; 57 (4) : 663-73. [epub] 20160224

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26912395

Grantová podpora
DK033301 NIDDK NIH HHS - United States
R01 DK060022 NIDDK NIH HHS - United States
P30 DK056341 NIDDK NIH HHS - United States
R01 DK033301 NIDDK NIH HHS - United States
DK097608 NIDDK NIH HHS - United States
DK60022 NIDDK NIH HHS - United States
P30 DK020579 NIDDK NIH HHS - United States
R01 DK097608 NIDDK NIH HHS - United States
P30DK-020579 NIDDK NIH HHS - United States

Odkazy

PubMed 26912395
PubMed Central PMC4808775
DOI 10.1194/jlr.m066530
PII: S0022-2275(20)35421-3
Knihovny.cz E-zdroje

Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.

Zobrazit více v PubMed

Frühbeck G., Méndez-Giménez L., Fernández-Formoso J. A., Fernández S., and Rodriguez A.. 2014. Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27: 63–93. PubMed

Nielsen T. S., Jessen N., Jorgensen J. O., Moller N., and Lund S.. 2014. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52: R199–R222. PubMed

Huh J. Y., Park Y. J., Ham M., and Kim J. B.. 2014. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells. 37: 365–371. PubMed PMC

Fasshauer M., and Bluher M.. 2015. Adipokines in health and disease. Trends Pharmacol. Sci. 36: 461–470. PubMed

Hill A. A., Reid Bolus W., and Hasty A. H.. 2014. A decade of progress in adipose tissue macrophage biology. Immunol. Rev. 262: 134–152. PubMed PMC

Cinti S., Mitchell G., Barbatelli G., Murano I., Ceresi E., Faloia E., Wang S., Fortier M., Greenberg A. S., and Obin M. S.. 2005. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46: 2347–2355. PubMed

Ortega Martinez de Victoria E., Xu X., Koska J., Francisco A. M., Scalise M., Ferrante A. W. Jr., and Krakoff J.. 2009. Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy Pima Indians. Diabetes. 58: 385–393. PubMed PMC

Kosteli A., Sugaru E., Haemmerle G., Martin J. F., Lei J., Zechner R., and Ferrante A. W. Jr. 2010. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120: 3466–3479. PubMed PMC

Capel F., Klimcakova E., Viguerie N., Roussel B., Vitkova M., Kovacikova M., Polak J., Kovacova Z., Galitzky J., Maoret J. J., et al. . 2009. Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes. 58: 1558–1567. PubMed PMC

Michaud A., Pelletier M., Noel S., Bouchard C., and Tchernof A.. 2013. Markers of macrophage infiltration and measures of lipolysis in human abdominal adipose tissues. Obesity (Silver Spring). 21: 2342–2349. PubMed

Shi H., Kokoeva M. V., Inouye K., Tzameli I., Yin H., and Flier J. S.. 2006. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116: 3015–3025. PubMed PMC

Suganami T., Tanimoto-Koyama K., Nishida J., Itoh M., Yuan X., Mizuarai S., Kotani H., Yamaoka S., Miyake K., Aoe S., et al. . 2007. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler. Thromb. Vasc. Biol. 27: 84–91. PubMed

Zhou D., Samovski D., Okunade A. L., Stahl P. D., Abumrad N. A., and Su X.. 2012. CD36 level and trafficking are determinants of lipolysis in adipocytes. FASEB J. 26: 4733–4742. PubMed PMC

Liu Y., Zhou D., Abumrad N. A., and Su X.. 2010. ADP-ribosylation factor 6 modulates adrenergic stimulated lipolysis in adipocytes. Am. J. Physiol. Cell Physiol. 298: C921–C928. PubMed PMC

Patsouris D., Neels J. G., Fan W., Li P-P., Nguyen M. T. A., and Olefsky J. M.. 2009. Glucocorticoids and thiazolidinediones interfere with adipocyte-mediated macrophage chemotaxis and recruitment. J. Biol. Chem. 284: 31223–31235. PubMed PMC

Zeghari N., Vidal H., Younsi M., Ziegler O., Drouin P., and Donner M.. 2000. Adipocyte membrane phospholipids and PPAR-gamma expression in obese women: relationship to hyperinsulinemia. Am. J. Physiol. Endocrinol. Metab. 279: E736–E743. PubMed

Balsinde J., Winstead M. V., and Dennis E. A.. 2002. Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett. 531: 2–6. PubMed

Wolf G. 2009. Adipose-specific phospholipase as regulator of adiposity. Nutr. Rev. 67: 551–554. PubMed

Pavicevic Z., Leslie C. C., and Malik K. U.. 2008. cPLA2 phosphorylation at serine-515 and serine-505 is required for arachidonic acid release in vascular smooth muscle cells. J. Lipid Res. 49: 724–737. PubMed

Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., and Davis R. J.. 1993. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 72: 269–278. PubMed

Bertolini A., Ottani A., and Sandrini M.. 2002. Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr. Med. Chem. 9: 1033–1043. PubMed

Tang E. H., Cai Y., Wong C. K., Rocha V. Z., Sukhova G. K., Shimizu K., Xuan G., Vanhoutte P. M., Libby P., and Xu A.. 2015. Activation of prostaglandin E2–EP4 signaling reduces chemokine production in adipose tissue. J. Lipid Res. 56: 358–368. PubMed PMC

Red Eagle A., and Chawla A.. 2010. In obesity and weight loss, all roads lead to the mighty macrophage. J. Clin. Invest. 120: 3437–3440. PubMed PMC

Trayhurn P., and Wood I. S.. 2005. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem. Soc. Trans. 33: 1078–1081. PubMed

Guo L., Zhou D., Pryse K. M., Okunade A. L., and Su X.. 2010. Fatty acid 2-hydroxylase mediates diffusional mobility of Raft-associated lipids, GLUT4 level, and lipogenesis in 3T3–L1 adipocytes. J. Biol. Chem. 285: 25438–25447. PubMed PMC

Lumeng C. N., Deyoung S. M., Bodzin J. L., and Saltiel A. R.. 2007. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 56: 16–23. PubMed

Weisberg S. P., McCann D., Desai M., Rosenbaum M., Leibel R. L., and Ferrante A. W. Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112: 1796–1808. PubMed PMC

Iyer A., Fairlie D. P., Prins J. B., Hammock B. D., and Brown L.. 2010. Inflammatory lipid mediators in adipocyte function and obesity. Nat. Rev. Endocrinol. 6: 71–82. PubMed

Shimizu T. 2009. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49: 123–150. PubMed

Strong P., Coleman R. A., and Humphrey P. P.. 1992. Prostanoid-induced inhibition of lipolysis in rat isolated adipocytes: probable involvement of EP3 receptors. Prostaglandins. 43: 559–566. PubMed

Frolov A., Yang L., Dong H., Hammock B. D., and Crofford L. J.. 2013. Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. Prostaglandins Leukot. Essent. Fatty Acids. 89: 351–358. PubMed PMC

Sokolowska M., Chen L. Y., Liu Y., Martinez-Anton A., Qi H. Y., Logun C., Alsaaty S., Park Y. H., Kastner D. L., Chae J. J., et al. . 2015. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J. Immunol. 194: 5472–5487. PubMed PMC

Kalinski P. 2012. Regulation of immune responses by prostaglandin E2. J. Immunol. 188: 21–28. PubMed PMC

Lumeng C. N., Bodzin J. L., and Saltiel A. R.. 2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117: 175–184. PubMed PMC

Norris P. C., Gosselin D., Reichart D., Glass C. K., and Dennis E. A.. 2014. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation. Proc. Natl. Acad. Sci. USA. 111: 12746–12751. PubMed PMC

Muthalif M. M., Benter I. F., Karzoun N., Fatima S., Harper J., Uddin M. R., and Malik K. U.. 1998. 20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin-dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA. 95: 12701–12706. PubMed PMC

Vane J. R., Bakhle Y. S., and Botting R. M.. 1998. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38: 97–120. PubMed

Klein T., Shephard P., Kleinert H., and Komhoff M.. 2007. Regulation of cyclooxygenase-2 expression by cyclic AMP. Biochim. Biophys. Acta. 1773: 1605–1618. PubMed

Sun H., Sheveleva E., and Chen Q. M.. 2008. Corticosteroids induce cyclooxygenase 1 expression in cardiomyocytes: role of glucocorticoid receptor and Sp3 transcription factor. Mol. Endocrinol. 22: 2076–2084. PubMed PMC

Anderson G. D., Hauser S. D., McGarity K. L., Bremer M. E., Isakson P. C., and Gregory S. A.. 1996. Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J. Clin. Invest. 97: 2672–2679. PubMed PMC

Scott K. F., Sajinovic M., Hein J., Nixdorf S., Galettis P., Liauw W., de Souza P., Dong Q., Graham G. G., and Russell P. J.. 2010. Emerging roles for phospholipase A2 enzymes in cancer. Biochimie. 92: 601–610. PubMed

Jeong W. C., Kim K. J., Ju H. W., Back H. K., Kim H. K., Im S. Y., and Lee H. K.. 2010. Cytoplasmic phospholipase A2 metabolites play a critical role in pulmonary tumor metastasis in mice. Anticancer Res. 30: 3421–3427. PubMed

Zhang Q., Wang D., Singh N. K., Kundumani-Sridharan V., Gadiparthi L., Rao Ch. M., and Rao G. N.. 2011. Activation of cytosolic phospholipase A2 downstream of the Src-phospholipase D1 (PLD1)-protein kinase C gamma (PKCgamma) signaling axis is required for hypoxia-induced pathological retinal angiogenesis. J. Biol. Chem. 286: 22489–22498. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...