The use of noncrystallographic symmetry averaging to solve structures from data affected by perfect hemihedral twinning

. 2016 Mar ; 72 (Pt 3) : 188-97. [epub] 20160216

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26919522

Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of the domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for C(α) atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.

Zobrazit více v PubMed

Brünger, A. T. (1992). Nature (London), 355, 472–475. PubMed

Brunger, A. T. (2007). Nature Protoc. 2, 2728–2733. PubMed

Chandra, N., Acharya, K. R. & Moody, P. C. E. (1999). Acta Cryst. D55, 1750–1758. PubMed

Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12–21. PubMed PMC

Chen, Z., Blanc, E. & Chapman, M. S. (1999). Acta Cryst. D55, 219–224. PubMed

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. PubMed PMC

Evans, P. (2006). Acta Cryst. D62, 72–82. PubMed

Fabiola, F., Korostelev, A. & Chapman, M. S. (2006). Acta Cryst. D62, 227–238. PubMed

Filman, D. J., Wien, M. W., Cunningham, J. A., Bergelson, J. M. & Hogle, J. M. (1998). Acta Cryst. D54, 1261–1272. PubMed

Grainger, C. T. (1969). Acta Cryst. A25, 427–434.

Helliwell, J. R. (2008). Crystallogr. Rev. 14, 189–250.

Jones, T. A., Bergdoll, M. & Kjeldgaard, M. (1990). Crystallographic and Modeling Methods in Molecular Design, edited by C. E. Bugg & S. E. Ealick, pp. 189–199. New York: Springer-Verlag.

Kabsch, W. (2010). Acta Cryst. D66, 125–132. PubMed PMC

Kleywegt, G. J. (2000). Acta Cryst. D56, 249–265. PubMed

Kleywegt, G. J. & Brünger, A. T. (1996). Structure, 4, 897–904. PubMed

Kleywegt, G. J. & Jones, T. A. (1999). Acta Cryst. D55, 941–944. PubMed

Kleywegt, G. J. & Read, R. J. (1997). Structure, 5, 1557–1569. PubMed

Krishnaswamy, S. & Rossmann, M. G. (1990). J. Mol. Biol. 211, 803–844. PubMed

Luo, M., He, C., Toth, K. S., Zhang, C. X. & Lipton, H. L. (1992). Proc. Natl Acad. Sci. USA, 89, 2409–2413. PubMed PMC

Miller, S. T., Hogle, J. M. & Filman, D. J. (2001). J. Mol. Biol. 307, 499–512. PubMed

Muckelbauer, J. K., Kremer, M., Minor, I., Tong, L., Zlotnick, A., Johnson, J. E. & Rossmann, M. G. (1995). Acta Cryst. D51, 871–887. PubMed

Padilla, J. E. & Yeates, T. O. (2003). Acta Cryst. D59, 1124–1130. PubMed

Parsons, S. (2003). Acta Cryst. D59, 1995–2003. PubMed

Plevka, P., Hafenstein, S., Harris, K. G., Cifuente, J. O., Zhang, Y., Bowman, V. D., Chipman, P. R., Bator, C. M., Lin, F., Medof, M. E. & Rossmann, M. G. (2010). J. Virol. 84, 12665–12674. PubMed PMC

Plevka, P., Kazaks, A., Voronkova, T., Kotelovica, S., Dishlers, A., Liljas, L. & Tars, K. (2009). J. Mol. Biol. 391, 635–647. PubMed

Porta, C., Kotecha, A., Burman, A., Jackson, T., Ren, J., Loureiro, S., Jones, I. M., Fry, E. E., Stuart, D. I. & Charleston, B. (2013). PLoS Pathog. 9, e1003255. PubMed PMC

Redinbo, M. R. & Yeates, T. O. (1993). Acta Cryst. D49, 375–380. PubMed

Smyth, M., Tate, J., Hoey, E., Lyons, C., Martin, S. & Stuart, D. (1995). Nature Struct. Biol. 2, 224–231. PubMed

Tong, L. & Rossmann, M. G. (1990). Acta Cryst. A46, 783–792. PubMed

Tuthill, T. J., Harlos, K., Walter, T. S., Knowles, N. J., Groppelli, E., Rowlands, D. J., Stuart, D. I. & Fry, E. E. (2009). PLoS Pathog. 5, e1000620. PubMed PMC

Vellieux, F. M. D. A. P., Hunt, J. F., Roy, S. & Read, R. J. (1995). J. Appl. Cryst. 28, 347–351.

Wang, X. et al. (2012). Nature Struct. Mol. Biol. 19, 424–429. PubMed PMC

Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed

Yamashita, T., Kobayashi, S., Sakae, K., Nakata, S., Chiba, S., Ishihara, Y. & Isomura, S. (1991). J. Infect. Dis. 164, 954–957. PubMed

Yamashita, T., Sakae, K., Tsuzuki, H., Suzuki, Y., Ishikawa, N., Takeda, N., Miyamura, T. & Yamazaki, S. (1998). J. Virol. 72, 8408–8412. PubMed PMC

Yeates, T. O. (1997). Methods Enzymol. 276, 344–358. PubMed

Yeates, T. O. & Fam, B. C. (1999). Structure, 7, R25–R29. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structure of Aichi Virus 1 and Its Empty Particle: Clues to Kobuvirus Genome Release Mechanism

. 2016 Dec 01 ; 90 (23) : 10800-10810. [epub] 20161114

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...