Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe(3.)
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
26924814
PubMed Central
PMC4770002
DOI
10.1186/s11671-016-1326-8
PII: 10.1186/s11671-016-1326-8
Knihovny.cz E-resources
- Keywords
- Carbon dots, Garlic, Ion detection,
- Publication type
- Journal Article MeSH
Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe(3+) ion made these CDs a luminescent probe for selective detection of Fe(3+) ion.
See more in PubMed
Chen X, Nam S-W, Kim G-H, Song N, Jeong Y, Shin I, et al. A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. Chem Commun. 2010;46(47):8953–5. doi: 10.1039/c0cc03398g. PubMed DOI
Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA. Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc. 2005;127(6):1656–7. doi: 10.1021/ja0464140. PubMed DOI
Zhang X, Zhang Y, Yan L, Ji C, Wu H, Wang Y, et al. High photocurrent PbSe solar cells with thin active layers. J Mater Chem A. 2015;3(16):8501–7. doi: 10.1039/C5TA00092K. DOI
Tyrakowski CM, Snee PT. A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status. Phys Chem Chem Phys. 2014;16(3):837–55. doi: 10.1039/C3CP53502A. PubMed DOI
Yan L, Zhang Y, Zhang T, Feng Y, Zhu K, Wang D, et al. Tunable near-infrared luminescence of PbSe quantum dots for multigas analysis. Anal Chem. 2014;86(22):11312–8. doi: 10.1021/ac5030478. PubMed DOI
Hu W, Henderson R, Zhang Y, You G, Wei L, Bai Y, et al. Near-infrared quantum dot light emitting diodes employing electron transport nanocrystals in a layered architecture. Nanotechnology. 2012;23(37):375202. doi: 10.1088/0957-4484/23/37/375202. PubMed DOI
Gu P, Zhang Y, Feng Y, Zhang T, Chu H, Cui T, et al. Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots. Nanoscale. 2013;5(21):10481–6. doi: 10.1039/c3nr02438e. PubMed DOI
Yu WW, Qu L, Guo W, Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15(14):2854–60. doi: 10.1021/cm034081k. DOI
Cademartiri L, Montanari E, Calestani G, Migliori A, Guagliardi A, Ozin GA. Size-dependent extinction coefficients of PbS quantum dots. J Am Chem Soc. 2006;128(31):10337–46. doi: 10.1021/ja063166u. PubMed DOI
Yu WW. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications. Expert Opin Biol Th. 2008;8(10):1571–81. doi: 10.1517/14712598.8.10.1571. PubMed DOI
Liu W, Zhang Y, Wu H, Feng Y, Zhang T, Gao W, et al. Planar temperature sensing using heavy-metal-free quantum dots with micrometer resolution. Nanotechnology. 2014;25(28):285501. doi: 10.1088/0957-4484/25/28/285501. PubMed DOI
Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed. 2004;43(45):6042–108. doi: 10.1002/anie.200400651. PubMed DOI
Yu WW, Chang E, Drezek R, Colvin VL. Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun. 2006;348(3):781–6. doi: 10.1016/j.bbrc.2006.07.160. PubMed DOI
Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc. 2007;129(10):2871–9. doi: 10.1021/ja067184n. PubMed DOI
Touceda-Varela A, Stevenson EI, Galve-Gasion JA, Dryden DTF, Mareque-Rivas JC. Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. Chem Commun. 2008;17:1998–2000. doi: 10.1039/b716194h. PubMed DOI
Sun C, Zhang Y, Wang Y, Liu W, Kalytchuk S, Kershaw SV, et al. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots. Appl Phys Lett. 2014;104(26):261106. doi: 10.1063/1.4886415. DOI
Wang Y, Kalytchuk S, Wang L, Zhovtiuk O, Cepe K, Zboril R, et al. Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun. 2015;51(14):2950–3. doi: 10.1039/C4CC09589H. PubMed DOI
Sun C, Zhang Y, Sun K, Reckmeier C, Zhang T, Zhang X, et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes. Nanoscale. 2015;7(28):12045–50. doi: 10.1039/C5NR03014E. PubMed DOI
Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9(5):590–603. doi: 10.1016/j.nantod.2014.09.004. DOI
Sun C, Zhang Y, Kalytchuk S, Wang Y, Zhang X, Gao W, et al. Down-conversion monochromatic light-emitting diodes with the color determined by the active layer thickness and concentration of carbon dots. J Mater Chem C. 2015;3(26):6613–5. doi: 10.1039/C5TC01379H. DOI
Zhang X, Zhang Y, Wang Y, Kalytchuk S, Kershaw SV, Wang Y, et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano. 2013;7(12):11234–41. doi: 10.1021/nn405017q. PubMed DOI
Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49(38):6726–44. doi: 10.1002/anie.200906623. PubMed DOI
Li H, Kang Z, Liu Y, Lee S-T. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22(46):24230–53. doi: 10.1039/c2jm34690g. DOI
Hu S-L, Niu K-Y, Sun J, Yang J, Zhao N-Q, Du X-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem. 2009;19(4):484–8. doi: 10.1039/B812943F. DOI
Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–7. doi: 10.1021/ja040082h. PubMed DOI
Bao L, Zhang Z-L, Tian Z-Q, Zhang L, Liu C, Lin Y, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater. 2011;23(48):5801–6. doi: 10.1002/adma.201102866. PubMed DOI
Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52(30):7800–4. doi: 10.1002/anie.201301114. PubMed DOI
Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem. 2013;125(14):4045–9. doi: 10.1002/ange.201300519. PubMed DOI
Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–10. doi: 10.1021/nn300760g. PubMed DOI
Li H, He X, Liu Y, Huang H, Lian S, Lee S-T, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon. 2011;49(2):605–9. doi: 10.1016/j.carbon.2010.10.004. DOI
Sachdev A, Gopinath P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst. 2015;140(12):4260–9. doi: 10.1039/C5AN00454C. PubMed DOI
Zhai Y, Zhu Z, Zhu C, Ren J, Wang E, Dong S. Multifunctional water-soluble luminescent carbon dots for imaging and Hg2+ sensing. J Mater Chem B. 2014;2(40):6995–9. doi: 10.1039/C4TB01035C. PubMed DOI
Wang L, Zhou HS. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem. 2014;86(18):8902–5. doi: 10.1021/ac502646x. PubMed DOI
Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X. Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. J Nanopart Res. 2012;15(1):1–7.
Huang H, Xu Y, Tang C-J, Chen J-R, Wang A-J, Feng J-J. Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. New J Chem. 2014;38(2):784–9. doi: 10.1039/c3nj01185b. DOI
Barati A, Shamsipur M, Arkan E, Hosseinzadeh L, Abdollahi H. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology. Mat Sci Eng C. 2015;47:325–32. doi: 10.1016/j.msec.2014.11.035. PubMed DOI
Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun. 2012;48(70):8835–7. doi: 10.1039/c2cc33796g. PubMed DOI
Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem. 2012;84(12):5351–7. doi: 10.1021/ac3007939. PubMed DOI
Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater. 2012;24(15):2037–41. doi: 10.1002/adma.201200164. PubMed DOI
Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles-reduced graphene oxide nanocomposites for glucose detection. Catal Sci Technol. 2013;3(4):1027–35. doi: 10.1039/c2cy20635h. DOI
Park SY, Lee HU, Park ES, Lee SC, Lee J-W, Jeong SW, et al. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces. 2014;6(5):3365–70. doi: 10.1021/am500159p. PubMed DOI
Ding H, Wei J-S, Xiong H-M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale. 2014;6(22):13817–23. doi: 10.1039/C4NR04267K. PubMed DOI
Xu Q, Pu P, Zhao J, Dong C, Gao C, Chen Y, et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A. 2015;3(2):542–6. doi: 10.1039/C4TA05483K. DOI
Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 2013;64:424–34. doi: 10.1016/j.carbon.2013.07.095. DOI
Mohapatra S, Sahu S, Sinha N, Bhutia SK. Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg2+ in water and living cells. Analyst. 2015;140(4):1221–8. doi: 10.1039/C4AN01386G. PubMed DOI
Jiang J, He Y, Li S, Cui H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun. 2012;48(77):9634–6. doi: 10.1039/c2cc34612e. PubMed DOI
Zhou J, Yang Y, Zhang C-y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun. 2013;49(77):8605–7. doi: 10.1039/c3cc42266f. PubMed DOI
Wang J, Wang C-F, Chen S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed. 2012;51(37):9297–301. doi: 10.1002/anie.201204381. PubMed DOI
Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater. 2009;21(23):5563–5. doi: 10.1021/cm901593y. DOI
Huang H, Li C, Zhu S, Wang H, Chen C, Wang Z, et al. Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications. Langmuir. 2014;30(45):13542–8. doi: 10.1021/la503969z. PubMed DOI
Wang Y, Kalytchuk S, Zhang Y, Shi H, Kershaw SV, Rogach AL. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J Phys Chem Lett. 2014;5(8):1412–20. doi: 10.1021/jz5005335. PubMed DOI
Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep. 2014;4:5294. PubMed PMC
Wang C, Xu Z, Cheng H, Lin H, Humphrey MG, Zhang C. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon. 2015;82:87–95. doi: 10.1016/j.carbon.2014.10.035. DOI
Tian J, Liu Q, Asiri AM, Sun X, He Y. Ultrathin graphitic C3N4 nanofibers: hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+ Sens Actuators B. 2015;216:453–60. doi: 10.1016/j.snb.2015.04.075. DOI
Qu K, Wang J, Ren J, Qu X. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chemistry – A European Journal. 2013;19(22):7243–9. doi: 10.1002/chem.201300042. PubMed DOI
Zhu W, Zhang J, Jiang Z, Wang W, Liu X. High-quality carbon dots: synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+ RSC Advances. 2014;4(33):17387–92. doi: 10.1039/C3RA47593J. DOI