• This record comes from PubMed

Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe(3.)

. 2016 Dec ; 11 (1) : 110. [epub] 20160229

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 26924814
PubMed Central PMC4770002
DOI 10.1186/s11671-016-1326-8
PII: 10.1186/s11671-016-1326-8
Knihovny.cz E-resources

Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe(3+) ion made these CDs a luminescent probe for selective detection of Fe(3+) ion.

See more in PubMed

Chen X, Nam S-W, Kim G-H, Song N, Jeong Y, Shin I, et al. A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. Chem Commun. 2010;46(47):8953–5. doi: 10.1039/c0cc03398g. PubMed DOI

Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA. Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc. 2005;127(6):1656–7. doi: 10.1021/ja0464140. PubMed DOI

Zhang X, Zhang Y, Yan L, Ji C, Wu H, Wang Y, et al. High photocurrent PbSe solar cells with thin active layers. J Mater Chem A. 2015;3(16):8501–7. doi: 10.1039/C5TA00092K. DOI

Tyrakowski CM, Snee PT. A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status. Phys Chem Chem Phys. 2014;16(3):837–55. doi: 10.1039/C3CP53502A. PubMed DOI

Yan L, Zhang Y, Zhang T, Feng Y, Zhu K, Wang D, et al. Tunable near-infrared luminescence of PbSe quantum dots for multigas analysis. Anal Chem. 2014;86(22):11312–8. doi: 10.1021/ac5030478. PubMed DOI

Hu W, Henderson R, Zhang Y, You G, Wei L, Bai Y, et al. Near-infrared quantum dot light emitting diodes employing electron transport nanocrystals in a layered architecture. Nanotechnology. 2012;23(37):375202. doi: 10.1088/0957-4484/23/37/375202. PubMed DOI

Gu P, Zhang Y, Feng Y, Zhang T, Chu H, Cui T, et al. Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots. Nanoscale. 2013;5(21):10481–6. doi: 10.1039/c3nr02438e. PubMed DOI

Yu WW, Qu L, Guo W, Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15(14):2854–60. doi: 10.1021/cm034081k. DOI

Cademartiri L, Montanari E, Calestani G, Migliori A, Guagliardi A, Ozin GA. Size-dependent extinction coefficients of PbS quantum dots. J Am Chem Soc. 2006;128(31):10337–46. doi: 10.1021/ja063166u. PubMed DOI

Yu WW. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications. Expert Opin Biol Th. 2008;8(10):1571–81. doi: 10.1517/14712598.8.10.1571. PubMed DOI

Liu W, Zhang Y, Wu H, Feng Y, Zhang T, Gao W, et al. Planar temperature sensing using heavy-metal-free quantum dots with micrometer resolution. Nanotechnology. 2014;25(28):285501. doi: 10.1088/0957-4484/25/28/285501. PubMed DOI

Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed. 2004;43(45):6042–108. doi: 10.1002/anie.200400651. PubMed DOI

Yu WW, Chang E, Drezek R, Colvin VL. Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun. 2006;348(3):781–6. doi: 10.1016/j.bbrc.2006.07.160. PubMed DOI

Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc. 2007;129(10):2871–9. doi: 10.1021/ja067184n. PubMed DOI

Touceda-Varela A, Stevenson EI, Galve-Gasion JA, Dryden DTF, Mareque-Rivas JC. Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. Chem Commun. 2008;17:1998–2000. doi: 10.1039/b716194h. PubMed DOI

Sun C, Zhang Y, Wang Y, Liu W, Kalytchuk S, Kershaw SV, et al. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots. Appl Phys Lett. 2014;104(26):261106. doi: 10.1063/1.4886415. DOI

Wang Y, Kalytchuk S, Wang L, Zhovtiuk O, Cepe K, Zboril R, et al. Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun. 2015;51(14):2950–3. doi: 10.1039/C4CC09589H. PubMed DOI

Sun C, Zhang Y, Sun K, Reckmeier C, Zhang T, Zhang X, et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes. Nanoscale. 2015;7(28):12045–50. doi: 10.1039/C5NR03014E. PubMed DOI

Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9(5):590–603. doi: 10.1016/j.nantod.2014.09.004. DOI

Sun C, Zhang Y, Kalytchuk S, Wang Y, Zhang X, Gao W, et al. Down-conversion monochromatic light-emitting diodes with the color determined by the active layer thickness and concentration of carbon dots. J Mater Chem C. 2015;3(26):6613–5. doi: 10.1039/C5TC01379H. DOI

Zhang X, Zhang Y, Wang Y, Kalytchuk S, Kershaw SV, Wang Y, et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano. 2013;7(12):11234–41. doi: 10.1021/nn405017q. PubMed DOI

Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49(38):6726–44. doi: 10.1002/anie.200906623. PubMed DOI

Li H, Kang Z, Liu Y, Lee S-T. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22(46):24230–53. doi: 10.1039/c2jm34690g. DOI

Hu S-L, Niu K-Y, Sun J, Yang J, Zhao N-Q, Du X-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem. 2009;19(4):484–8. doi: 10.1039/B812943F. DOI

Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–7. doi: 10.1021/ja040082h. PubMed DOI

Bao L, Zhang Z-L, Tian Z-Q, Zhang L, Liu C, Lin Y, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater. 2011;23(48):5801–6. doi: 10.1002/adma.201102866. PubMed DOI

Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52(30):7800–4. doi: 10.1002/anie.201301114. PubMed DOI

Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem. 2013;125(14):4045–9. doi: 10.1002/ange.201300519. PubMed DOI

Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–10. doi: 10.1021/nn300760g. PubMed DOI

Li H, He X, Liu Y, Huang H, Lian S, Lee S-T, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon. 2011;49(2):605–9. doi: 10.1016/j.carbon.2010.10.004. DOI

Sachdev A, Gopinath P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst. 2015;140(12):4260–9. doi: 10.1039/C5AN00454C. PubMed DOI

Zhai Y, Zhu Z, Zhu C, Ren J, Wang E, Dong S. Multifunctional water-soluble luminescent carbon dots for imaging and Hg2+ sensing. J Mater Chem B. 2014;2(40):6995–9. doi: 10.1039/C4TB01035C. PubMed DOI

Wang L, Zhou HS. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem. 2014;86(18):8902–5. doi: 10.1021/ac502646x. PubMed DOI

Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X. Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. J Nanopart Res. 2012;15(1):1–7.

Huang H, Xu Y, Tang C-J, Chen J-R, Wang A-J, Feng J-J. Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. New J Chem. 2014;38(2):784–9. doi: 10.1039/c3nj01185b. DOI

Barati A, Shamsipur M, Arkan E, Hosseinzadeh L, Abdollahi H. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology. Mat Sci Eng C. 2015;47:325–32. doi: 10.1016/j.msec.2014.11.035. PubMed DOI

Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun. 2012;48(70):8835–7. doi: 10.1039/c2cc33796g. PubMed DOI

Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem. 2012;84(12):5351–7. doi: 10.1021/ac3007939. PubMed DOI

Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater. 2012;24(15):2037–41. doi: 10.1002/adma.201200164. PubMed DOI

Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles-reduced graphene oxide nanocomposites for glucose detection. Catal Sci Technol. 2013;3(4):1027–35. doi: 10.1039/c2cy20635h. DOI

Park SY, Lee HU, Park ES, Lee SC, Lee J-W, Jeong SW, et al. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces. 2014;6(5):3365–70. doi: 10.1021/am500159p. PubMed DOI

Ding H, Wei J-S, Xiong H-M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale. 2014;6(22):13817–23. doi: 10.1039/C4NR04267K. PubMed DOI

Xu Q, Pu P, Zhao J, Dong C, Gao C, Chen Y, et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A. 2015;3(2):542–6. doi: 10.1039/C4TA05483K. DOI

Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 2013;64:424–34. doi: 10.1016/j.carbon.2013.07.095. DOI

Mohapatra S, Sahu S, Sinha N, Bhutia SK. Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg2+ in water and living cells. Analyst. 2015;140(4):1221–8. doi: 10.1039/C4AN01386G. PubMed DOI

Jiang J, He Y, Li S, Cui H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun. 2012;48(77):9634–6. doi: 10.1039/c2cc34612e. PubMed DOI

Zhou J, Yang Y, Zhang C-y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun. 2013;49(77):8605–7. doi: 10.1039/c3cc42266f. PubMed DOI

Wang J, Wang C-F, Chen S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed. 2012;51(37):9297–301. doi: 10.1002/anie.201204381. PubMed DOI

Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater. 2009;21(23):5563–5. doi: 10.1021/cm901593y. DOI

Huang H, Li C, Zhu S, Wang H, Chen C, Wang Z, et al. Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications. Langmuir. 2014;30(45):13542–8. doi: 10.1021/la503969z. PubMed DOI

Wang Y, Kalytchuk S, Zhang Y, Shi H, Kershaw SV, Rogach AL. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J Phys Chem Lett. 2014;5(8):1412–20. doi: 10.1021/jz5005335. PubMed DOI

Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep. 2014;4:5294. PubMed PMC

Wang C, Xu Z, Cheng H, Lin H, Humphrey MG, Zhang C. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon. 2015;82:87–95. doi: 10.1016/j.carbon.2014.10.035. DOI

Tian J, Liu Q, Asiri AM, Sun X, He Y. Ultrathin graphitic C3N4 nanofibers: hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+ Sens Actuators B. 2015;216:453–60. doi: 10.1016/j.snb.2015.04.075. DOI

Qu K, Wang J, Ren J, Qu X. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chemistry – A European Journal. 2013;19(22):7243–9. doi: 10.1002/chem.201300042. PubMed DOI

Zhu W, Zhang J, Jiang Z, Wang W, Liu X. High-quality carbon dots: synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+ RSC Advances. 2014;4(33):17387–92. doi: 10.1039/C3RA47593J. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...