Monitoring of CRT-D devices during radiation therapy in vitro
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26960554
PubMed Central
PMC4784340
DOI
10.1186/s12938-016-0144-7
PII: 10.1186/s12938-016-0144-7
Knihovny.cz E-zdroje
- MeSH
- bezdrátová technologie MeSH
- částice - urychlovače MeSH
- dávka záření MeSH
- defibrilátory implantabilní * MeSH
- lidé MeSH
- radioterapie * přístrojové vybavení MeSH
- selhání zařízení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Using of active cardiac medical devices increases steadily. In Europe, there were 183 implants of ICD and 944 implants of PM, 119 of biventricular ICD and 41 of biventricular PM, all per million inhabitants in 2014. Healthcare environments, including radiotherapy treatment rooms, are considered challenging for these implantable devices. Exposure to radiation may cause the device to experience premature elective replacement indicator, decreased pacing amplitude or pacing inhibition, inappropriate shocks or inhibition of tachyarrhythmia therapy and loss of device function. These impacts may be temporary or permanent. The aim of this study was to evaluate the influence of linear accelerator ionizing radiation dose of 10 Gy on the activity of the biventricular cardioverter-defibrillator in different position in radiation beam. METHODS: Two identical wireless communication devices with all three leads were used for the measurement. Both systems were soused into solution saline and exposed in different position in the beam of linear accelerator per 10 Gy fractions. In comparison of usually used maximum recommended dose of 2 Gy, the radiation doses used in test were five times higher. Using the simultaneous monitoring wireless communication between device and its programmer allowed watching of the devices activities, noise occurrence or drop of biventricular pacing on the programmer screen, observed by local television loop camera. RESULTS: At any device position in radiation beam, there were no influences of the device activity at dose of 10 Gy neither a significant increase of a solution saline temperature in any of the measured positions of CRT-D systems in linear accelerator. CONCLUSIONS: The results of the study indicated, that the recommendation dose for treating the patients with implantable devices are too conservative and the risk of device failure is not so high. The systems can easily withstand the dose fractions of tens Gy, which would allow current single-dose-procedure treatment in radiation therapy. Even though the process of the random alteration of device memory and electrical components by scatter particles not allowed to specify a safe dose during ionizing radiation, this study showed that the safe limit are above the today used dose fractions.
Institute of Nursing Faculty of Public Policies Silesian University Opava Czech Republic
Oncology clinic University Hospital Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Bax JJ, et al. Cardiac resynchronization therapy: part 1–issues before device implantation. J Am Coll Cardiol. 2005;46(12):2153–2167. doi: 10.1016/j.jacc.2005.09.019. PubMed DOI
Sundar S, Symonds RP, Deehan C. Radiotherapy to patients with artificial cardiac pacemakers. Cancer Treat Rev. 2005;31(6):474–486. doi: 10.1016/j.ctrv.2005.05.002. PubMed DOI
Kusumoto FM, Goldschlager N. Cardiac pacing. N Engl J Med. 1996;334(2):89–97. doi: 10.1056/NEJM199601113340206. PubMed DOI
Ector H, et al. The World survey of cardiac pacing and implantable cardioverter defibrillators: calendar year 1997–Europe. Pacing Clin Electrophysiol. 2001;24(5):863–868. doi: 10.1046/j.1460-9592.2001.00863.x. PubMed DOI
Bernstein AD, Parsonnet V. Survey of cardiac pacing and implanted defibrillator practice patterns in the United States in 1997. Pacing Clin Electrophysiol. 2001;24(5):842–855. doi: 10.1046/j.1460-9592.2001.00842.x. PubMed DOI
Kapa S, et al. Effects of scatter radiation on ICD and CRT function. Pacing Clin Electrophysiol. 2008;31(6):727–732. doi: 10.1111/j.1540-8159.2008.01077.x. PubMed DOI
Marbach JR, et al. Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM Task Group No. 34. American Association of Physicists in Medicine. Med Phys. 1994;21(1):85–90. doi: 10.1118/1.597259. PubMed DOI
Last A. Radiotherapy in patients with cardiac pacemakers. Br J Radiol. 1998;71(841):4–10. doi: 10.1259/bjr.71.841.9534692. PubMed DOI
Calfee RV. Therapeutic radiation and pacemakers. Pacing Clin Electrophysiol. 1982;5(2):160–161. doi: 10.1111/j.1540-8159.1982.tb02208.x. PubMed DOI
Hurkmans CW, et al. Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys. 2005;63(1):282–289. doi: 10.1016/j.ijrobp.2005.04.047. PubMed DOI
Rodriguez F, et al. Radiation-induced effects in multiprogrammable pacemakers and implantable defibrillators. Pacing Clin Electrophysiol. 1991;14(12):2143–2153. doi: 10.1111/j.1540-8159.1991.tb06485.x. PubMed DOI
Adamec R, et al. Damaging effect of therapeutic radiation on programmable pacemakers. Pacing Clin Electrophysiol. 1982;5(2):146–150. doi: 10.1111/j.1540-8159.1982.tb02205.x. PubMed DOI
Venselaar JL. The effects of ionizing radiation on eight cardiac pacemakers and the influence of electromagnetic interference from two linear accelerators. Radiother Oncol. 1985;3(1):81–87. doi: 10.1016/S0167-8140(85)80011-6. PubMed DOI
Venselaar JL, Van Kerkoerle HL, Vet AJ. Radiation damage to pacemakers from radiotherapy. Pacing Clin Electrophysiol. 1987;10(3 Pt 1):538–542. doi: 10.1111/j.1540-8159.1987.tb04517.x. PubMed DOI
Salmi J, et al. The influence of electromagnetic interference and ionizing radiation on cardiac pacemakers. Strahlenther Onkol. 1990;166(2):153–156. PubMed
Ngu SL, et al. Pacemaker function during irradiation: in vivo and in vitro effect. Australas Radiol. 1993;37(1):105–107. doi: 10.1111/j.1440-1673.1993.tb00027.x. PubMed DOI
Uiterwaal G, et al. Interference detection in implantable defibrillators induced by therapeutic radiation therapy. Netherlands Heart J. 2006;14(10):330. PubMed PMC
Makkar A, et al. Effect of radiation therapy on permanent pacemaker and implantable cardioverter-defibrillator function. Heart Rhythm. 2012;9(12):1964–1968. doi: 10.1016/j.hrthm.2012.08.018. PubMed DOI
Zaremba T, et al. The effect of radiotherapy beam energy on modern cardiac devices: an in vitro study. Europace. 2014;16(4):612–616. doi: 10.1093/europace/eut249. PubMed DOI
Hashii H, et al. Comparison of the effects of high-energy photon beam irradiation (10 and 18 MV) on 2 types of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys. 2013;85(3):840–845. doi: 10.1016/j.ijrobp.2012.05.043. PubMed DOI
Guidant Corporation Cardiac Rhythm Management Technical Services. Impact of therapeutic radiation and guidant ICD/CRTD/CRT-P/pacing systems. St. Paul MN, Guidant Corporation, 2004, Revision. pp. 1–6.
Gelblum DY, Amols H. Implanted cardiac defibrillator care in radiation oncology patient population. Int J Radiat Oncol Biol Phys. 2009;73(5):1525–1531. doi: 10.1016/j.ijrobp.2008.06.1903. PubMed DOI
Therapeutic radiation and implantable device Systems. 2012, Boston Scientific.
Kobayashi H, et al. Soft errors in SRAM devices induced by high energy neutrons, thermal neutrons and alpha particles. in Electron Devices Meeting, 2002. IEDM’02. International. 2002. IEEE.
Wilkinson JD, et al. Cancer-radiotherapy equipment as a cause of soft errors in electronic equipment. Device and Materials Reliability, IEEE Transactions on. 2005;5(3):449–451. doi: 10.1109/TDMR.2005.858342. DOI
Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model