Monitoring of CRT-D devices during radiation therapy in vitro

. 2016 Mar 09 ; 15 () : 29. [epub] 20160309

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26960554
Odkazy

PubMed 26960554
PubMed Central PMC4784340
DOI 10.1186/s12938-016-0144-7
PII: 10.1186/s12938-016-0144-7
Knihovny.cz E-zdroje

BACKGROUND: Using of active cardiac medical devices increases steadily. In Europe, there were 183 implants of ICD and 944 implants of PM, 119 of biventricular ICD and 41 of biventricular PM, all per million inhabitants in 2014. Healthcare environments, including radiotherapy treatment rooms, are considered challenging for these implantable devices. Exposure to radiation may cause the device to experience premature elective replacement indicator, decreased pacing amplitude or pacing inhibition, inappropriate shocks or inhibition of tachyarrhythmia therapy and loss of device function. These impacts may be temporary or permanent. The aim of this study was to evaluate the influence of linear accelerator ionizing radiation dose of 10 Gy on the activity of the biventricular cardioverter-defibrillator in different position in radiation beam. METHODS: Two identical wireless communication devices with all three leads were used for the measurement. Both systems were soused into solution saline and exposed in different position in the beam of linear accelerator per 10 Gy fractions. In comparison of usually used maximum recommended dose of 2 Gy, the radiation doses used in test were five times higher. Using the simultaneous monitoring wireless communication between device and its programmer allowed watching of the devices activities, noise occurrence or drop of biventricular pacing on the programmer screen, observed by local television loop camera. RESULTS: At any device position in radiation beam, there were no influences of the device activity at dose of 10 Gy neither a significant increase of a solution saline temperature in any of the measured positions of CRT-D systems in linear accelerator. CONCLUSIONS: The results of the study indicated, that the recommendation dose for treating the patients with implantable devices are too conservative and the risk of device failure is not so high. The systems can easily withstand the dose fractions of tens Gy, which would allow current single-dose-procedure treatment in radiation therapy. Even though the process of the random alteration of device memory and electrical components by scatter particles not allowed to specify a safe dose during ionizing radiation, this study showed that the safe limit are above the today used dose fractions.

Zobrazit více v PubMed

Bax JJ, et al. Cardiac resynchronization therapy: part 1–issues before device implantation. J Am Coll Cardiol. 2005;46(12):2153–2167. doi: 10.1016/j.jacc.2005.09.019. PubMed DOI

Sundar S, Symonds RP, Deehan C. Radiotherapy to patients with artificial cardiac pacemakers. Cancer Treat Rev. 2005;31(6):474–486. doi: 10.1016/j.ctrv.2005.05.002. PubMed DOI

Kusumoto FM, Goldschlager N. Cardiac pacing. N Engl J Med. 1996;334(2):89–97. doi: 10.1056/NEJM199601113340206. PubMed DOI

Ector H, et al. The World survey of cardiac pacing and implantable cardioverter defibrillators: calendar year 1997–Europe. Pacing Clin Electrophysiol. 2001;24(5):863–868. doi: 10.1046/j.1460-9592.2001.00863.x. PubMed DOI

Bernstein AD, Parsonnet V. Survey of cardiac pacing and implanted defibrillator practice patterns in the United States in 1997. Pacing Clin Electrophysiol. 2001;24(5):842–855. doi: 10.1046/j.1460-9592.2001.00842.x. PubMed DOI

Kapa S, et al. Effects of scatter radiation on ICD and CRT function. Pacing Clin Electrophysiol. 2008;31(6):727–732. doi: 10.1111/j.1540-8159.2008.01077.x. PubMed DOI

Marbach JR, et al. Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM Task Group No. 34. American Association of Physicists in Medicine. Med Phys. 1994;21(1):85–90. doi: 10.1118/1.597259. PubMed DOI

Last A. Radiotherapy in patients with cardiac pacemakers. Br J Radiol. 1998;71(841):4–10. doi: 10.1259/bjr.71.841.9534692. PubMed DOI

Calfee RV. Therapeutic radiation and pacemakers. Pacing Clin Electrophysiol. 1982;5(2):160–161. doi: 10.1111/j.1540-8159.1982.tb02208.x. PubMed DOI

Hurkmans CW, et al. Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys. 2005;63(1):282–289. doi: 10.1016/j.ijrobp.2005.04.047. PubMed DOI

Rodriguez F, et al. Radiation-induced effects in multiprogrammable pacemakers and implantable defibrillators. Pacing Clin Electrophysiol. 1991;14(12):2143–2153. doi: 10.1111/j.1540-8159.1991.tb06485.x. PubMed DOI

Adamec R, et al. Damaging effect of therapeutic radiation on programmable pacemakers. Pacing Clin Electrophysiol. 1982;5(2):146–150. doi: 10.1111/j.1540-8159.1982.tb02205.x. PubMed DOI

Venselaar JL. The effects of ionizing radiation on eight cardiac pacemakers and the influence of electromagnetic interference from two linear accelerators. Radiother Oncol. 1985;3(1):81–87. doi: 10.1016/S0167-8140(85)80011-6. PubMed DOI

Venselaar JL, Van Kerkoerle HL, Vet AJ. Radiation damage to pacemakers from radiotherapy. Pacing Clin Electrophysiol. 1987;10(3 Pt 1):538–542. doi: 10.1111/j.1540-8159.1987.tb04517.x. PubMed DOI

Salmi J, et al. The influence of electromagnetic interference and ionizing radiation on cardiac pacemakers. Strahlenther Onkol. 1990;166(2):153–156. PubMed

Ngu SL, et al. Pacemaker function during irradiation: in vivo and in vitro effect. Australas Radiol. 1993;37(1):105–107. doi: 10.1111/j.1440-1673.1993.tb00027.x. PubMed DOI

Uiterwaal G, et al. Interference detection in implantable defibrillators induced by therapeutic radiation therapy. Netherlands Heart J. 2006;14(10):330. PubMed PMC

Makkar A, et al. Effect of radiation therapy on permanent pacemaker and implantable cardioverter-defibrillator function. Heart Rhythm. 2012;9(12):1964–1968. doi: 10.1016/j.hrthm.2012.08.018. PubMed DOI

Zaremba T, et al. The effect of radiotherapy beam energy on modern cardiac devices: an in vitro study. Europace. 2014;16(4):612–616. doi: 10.1093/europace/eut249. PubMed DOI

Hashii H, et al. Comparison of the effects of high-energy photon beam irradiation (10 and 18 MV) on 2 types of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys. 2013;85(3):840–845. doi: 10.1016/j.ijrobp.2012.05.043. PubMed DOI

Guidant Corporation Cardiac Rhythm Management Technical Services. Impact of therapeutic radiation and guidant ICD/CRTD/CRT-P/pacing systems. St. Paul MN, Guidant Corporation, 2004, Revision. pp. 1–6.

Gelblum DY, Amols H. Implanted cardiac defibrillator care in radiation oncology patient population. Int J Radiat Oncol Biol Phys. 2009;73(5):1525–1531. doi: 10.1016/j.ijrobp.2008.06.1903. PubMed DOI

Therapeutic radiation and implantable device Systems. 2012, Boston Scientific.

Kobayashi H, et al. Soft errors in SRAM devices induced by high energy neutrons, thermal neutrons and alpha particles. in Electron Devices Meeting, 2002. IEDM’02. International. 2002. IEEE.

Wilkinson JD, et al. Cancer-radiotherapy equipment as a cause of soft errors in electronic equipment. Device and Materials Reliability, IEEE Transactions on. 2005;5(3):449–451. doi: 10.1109/TDMR.2005.858342. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model

. 2018 Aug 25 ; 18 (9) : . [epub] 20180825

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace