Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
30149621
PubMed Central
PMC6164870
DOI
10.3390/s18092799
PII: s18092799
Knihovny.cz E-zdroje
- Klíčová slova
- DNN, RNN, SVM, breast, cancer, deep learning, detection, neural network, visual techniques,
- MeSH
- infračervené záření * MeSH
- lidé MeSH
- nádory prsu diagnostické zobrazování patologie MeSH
- počítačové zpracování obrazu MeSH
- prsy diagnostické zobrazování patologie MeSH
- senzitivita a specificita MeSH
- strojové učení * MeSH
- termografie * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Women's breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models.
Zobrazit více v PubMed
National Breast Cancer Foundation . Breast Cancer Facts. National Breast Cancer Foundation; Sydney, Australia: 2016.
Dongola N. Mammography in Breast Cancer. [(accessed on 24 August 2018)]; Available online: https://emedicine.medscape.com/article/346529-overview.
Hamidinekoo A., Denton E., Rampun A., Honnor K., Zwiggelaar R. Deep learning in mammography and breast histology, an overview and future trends. Med. Image Anal. 2018;47:45–67. doi: 10.1016/j.media.2018.03.006. PubMed DOI
Kosus N., Kosus A., Duran M., Simavlı S., Turhan N. Comparison of standard mammography with Digital mammography and Digital infrared thermal imaging for breast cancer screening. J. Turk. Ger. Gynecol. Assoc. 2010;11:152–157. doi: 10.5152/jtgga.2010.24. PubMed DOI PMC
Li H., Weng J., Shi Y., Gu W., Mao Y., Wang Y., Liu W., Zhang J. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Sci. Rep. 2018;8 doi: 10.1038/s41598-01825005-7. PubMed DOI PMC
Dezs R., Anna H., Zsuzsa U., Peter P., Istvan C. Detecting and classifying lesions in mammograms with Deep Learning. Sci. Rep. 2018;8:4165. doi: 10.1038/s41598-018-22437-z. PubMed DOI PMC
Visual Lab A Methodology for Breast Disease Computer-Aided Diagnosis using dynamic thermography. [(accessed on 24 August 2018)]; Available online: http://visual.ic.uff.br/en/proeng/thiagoelias/
Alireza O., Bita S. Machine Learning Techniques to Diagnose BreastCancer; Proceedings of the 2010 5th International Symposium on Health Informatics and Bioinformatics; Antalya, Turkey. 20–22 April 2010; DOI
Saira C., Muhammad K., Khurram K. Breast Cancer Detection in Mammograms using Convolutional Neural Network; Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET); Sukkur, Pakistan. 3–4 March 2018; pp. 1–5.
Adriel A., Aura C., Roger R., Anselmo M., Claudineia A. Computer Aided Diagnosis for Breast Diseases Based on Infrared Images; Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA); Hammamet, Tunisia. 30 October–3 November 2017; pp. 172–177.
Vijaya M., Christy B. Thermal imaging based breast cancer analysis using BEMD and uniform RLBP; Proceedings of the 2017 Third International Conference on Biosignals, Images and Instrumentation (ICBSII); Chennai, India. 16–18 March 2017; pp. 1–6.
Dina A., Sheida N., Reda A., Clifford Y. Survey on deep convolutional neural networks in mammography; Proceedings of the 2017 IEEE 7th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS); Orlando, FL, USA. 19–21 October 2017.
Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., van der Laak J.A.W.M., van Ginneken B., Sánchez C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005. PubMed DOI
Rampun A., Scotney B.W., Morrow P.J., Wang H. Breast Density Classification Using Local Quinary Patterns with Various Neighbourhood Topologies. J. Imaging. 2018;4:14. doi: 10.3390/jimaging4010014. DOI
Li S., Johnson J., Peck A., Xie Q. Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. J. Transl. Med. 2017;15 doi: 10.1186/s12967-016-1115-2. PubMed DOI PMC
Amria A., Pulko S.H., Wilk A.J. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study. Comput. Methods Progr. Biomed. 2016;123:68–80. doi: 10.1016/j.cmpb.2015.09.014. PubMed DOI
Boogerd L.S., Handgraaf H.J., Lam H.D., Huurman V.A., FarinaSarasqueta A., Frangioni J.V., van de Velde C.J., Braat A.E., Vahrmeijer A.L. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance. Surg. Endosc. 2017;31:952–961. doi: 10.1007/s00464-016-5007-6. PubMed DOI PMC
Kandlikar S.G., Perez-Raya I., Raghupathi P.A., Gonzalez-Hernandez J.L., Dabydeen D., Medeiros L., Phatak P. Infrared imaging technology for breast cancer detection—Current status, protocols and new directions. Int. J. Heat Mass Transf. 2017;108:2303–2320. doi: 10.1016/j.ijheatmasstransfer.2017.01.086. DOI
Namikawa T., Sato T., Hanazaki K. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green. Surg. Today. 2015;45:1467–1474. doi: 10.1007/s00595-015-1158-7. PubMed DOI
Kontos M., Wilson R., Fentiman I. Digital infrared thermal imaging (DITI) of breast lesions: Sensitivity and specificity of detection of primary breast cancers. Clin. Radiol. 2011;66:536–539. doi: 10.1016/j.crad.2011.01.009. PubMed DOI
Mambou S., Maresova P., Krejcar O., Selamat A., Kuca K. Breast Cancer Detection Using Modern Visual IT Techniques. In: Andrzej S., Adrianna K., Manuel N., Quang Thuy H., editors. Modern Approaches for Intelligent Information and Database Systems. Volume 769. Springer; Berlin, Germany: 2018. pp. 397–407.
Kandlikar S.G., Perez-Raya I., Raghupathi P.A., Gonzalez-Hernandez J.L., Dabydeen D., Medeiros L., Phatak P. Infrared imaging technology for breast cancer detection—Current status, protocols and new directions. Int. J. Heat Mass Transf. 2017;108:2303–2320. doi: 10.1016/j.ijheatmasstransfer.2017.01.086. DOI
Czech Society for Oncology National Oncology Program. [(accessed on 24 August 2018)]; Available online: https://www.linkos.cz/narodni-onkologicky-program/
Unar-Mungu´ıa M., Meza R., Colchero M.A., Torres-Mejía G., de Cosío T.G. Economic and disease burden of breast cancer associated with suboptimal breastfeeding practices in Mexico. Cancer Causes Control. 2017;28:1381–1391. doi: 10.1007/s10552-017-0965-0. PubMed DOI
Boquete L., Ortega S., Miguel-Jimenez J.M., Rodrıguez-Ascariz J.M., Blanco R. Automated Detection of Breast Cancer in Thermal Infrared Images, Based on Independent Component Analysis. J. Med. Syst. 2012;36:103–111. doi: 10.1007/s10916-010-9450-y. PubMed DOI
Kubicek J., Bryjova I., Faltynova K., Penhaker M., Augustynek M., Maresova P. Evaluation of Gama Analysis Results Significance within Verification of Radiation IMRT Plans in Radiotherapy; Proceedings of the Conference on Computational Collective Intelligence Technologies and Applications; Nicosia, Cyprus. 27 September 2017; pp. 541–548. DOI
Augustynek M., Korpas D., Penhaker M., Cvek J., Binarova A. Monitoring of CRT-D devices during radiation therapy in vitro. Biomed. Eng. Online. 2016;15 doi: 10.1186/s12938-016-0144-7. PubMed DOI PMC
Yszczarz B.L., Nojszewska E. Productivity losses and public finance burden attributable to breast cancer in Poland, 2010–2014. BMC Cancer. 2017;17 doi: 10.1186/s12885-017-3669-7. PubMed DOI PMC
Nitori N., Deguchi T., Kubota K., Yoshida M., Kato A., Kojima M., Kadomura T., Okada A., Okamura J., Kobayashi M., et al. Successful treatment of non-occlusive mesenteric ischemia (NOMI) using the HyperEye Medical System for intraoperative visualization of the mesenteric and bowel circulation: Report of a case. Surg Today. 2014;44:359–362. doi: 10.1007/s00595-013-0503-y. PubMed DOI
Cardoso F., Harbeck N., Barrios C.H., Bergh J., Cortés J., El Saghir N., Francis P.A., Hudis C.A., Ohno S., Partridge A.H., et al. Research needs in breast cancer. Ann. Oncol. 2016;28:208–217. doi: 10.1093/annonc/mdw571. PubMed DOI
Šmídová I. Alcohol and Breast Cancer-Economic Costs. Hygiena. 2012;51:17–21.
Gustavsen G., Schroeder B., Kennedy P., Pothier K.C., Erlander M.G., Schnabel C.A., Ali H. Health economic analysis of Breast Cancer Index in patients with ER+, LN-breast cancer. Am. J. Manag. Care. 2014;20:e302-10. PubMed
IMS Institute for Healthcare Informatics Global Oncology Trend Report: A Review of 2015 and Outlook to 2020. [(accessed on 24 August 2018)]; Available online: https://morningconsult.com/wp-content/uploads/2016/06/IMS-Institute-Global-Oncology-Report-05.31.16.pdf.
Kim Y.A., Oh I.H., Yoon S.J., Kim H.J., Seo H.Y., Kim E.J., Lee Y.H., Jung J.H. The Economic Burden of Breast Cancer in Korea from 2007–2010. Cancer Res. Treat. 2015;47:583–590. doi: 10.4143/crt.2014.143. PubMed DOI PMC
Angel C., Hannah G., Ajay B., Michael F., Shridar G., Natalie N.C., John L., Anant M. Accurate and reproducible invasive breast cancer detection in wholeslide images: A Deep Learning approach for quantifying tumor extent. Sci. Rep. 2017;7 doi: 10.1038/srep46450. PubMed DOI PMC
Guo Y., Liu S., Li Z., Shang X. BCDForest: A boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data. BMC Bioinform. 2018;19:118. doi: 10.1186/s12859-018-2095-4. PubMed DOI PMC
Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A. Going deeper with convolutions; Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition; Boston, MA, USA. 7–12 June 2015; pp. 1–9.
Bryjova I., Kubicek J., Molnarova K., Peter L., Penhaker M., Kuca K. Multiregional Segmentation Modeling in Medical Ultrasonography: Extraction, Modeling and Quantification of Skin Layers and Hypertrophic Scars; Proceedings of the International Conference on Computational Collective Intelligence; Nicosia, Cyprus. 27 September 2017; pp. 182–670775. DOI
Scikit-Learn A. Sklearn.Svm.LinearSVC. [(accessed on 24 August 2018)]; Available online: http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html.
Wikipedia Kernel method Mathematics: the kernel trick. [(accessed on 24 August 2018)]; Available online: https://en.wikipedia.org/wiki/Kernel_method_Mathematics:_the_kernel_trick.