Self-Assembled Monolayers of Molecular Conductors with Terpyridine-Metal Redox Switching Elements: A Combined AFM, STM and Electrochemical Study

. 2022 Nov 29 ; 27 (23) : . [epub] 20221129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36500413

Grantová podpora
21-13458S Czech Science Foundation
RVO: 61388955 Czech Academy of Sciences
MA 2605/6-1 Deutsche Forschungsgemeinschaft

Self-assembled monolayers (SAMs) of terpyridine-based transition metal (ruthenium and osmium) complexes, anchored to gold substrate via tripodal anchoring groups, have been investigated as possible redox switching elements for molecular electronics. An electrochemical study was complemented by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) methods. STM was used for determination of the SAM conductance values, and computation of the attenuation factor β from tunneling current-distance curves. We have shown that SAMs of Os-tripod molecules contain larger adlayer structures compared with SAMs of Ru-tripod molecules, which are characterized by a large number of almost evenly distributed small islands. Furthermore, upon cyclic voltammetric experimentation, Os-tripod films rearrange to form a smaller number of even larger islands, reminiscent of the Ostwald ripening process. Os-tripod SAMs displayed a higher surface concentration of molecules and lower conductance compared with Ru-tripod SAMs. The attenuation factor of Os-tripod films changed dramatically, upon electrochemical cycling, to a higher value. These observations are in accordance with previously reported electron transfer kinetics studies.

Zobrazit více v PubMed

Sauvage J.-P., Collin J.-P., Chambron J.-C., Guillerez S., Coudret C. Ruthenlum(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties. Chem. Rev. 1994;94:993–1019. doi: 10.1021/cr00028a006. DOI

Baranoff E., Collin J.-P., Flamigni L., Sauvage J.-P. From ruthenium(II) to iridium(III): 15 years of triads based on bis-terpyridine complexes. Chem. Soc. Rev. 2004;33:147–155. doi: 10.1039/b308983e. PubMed DOI

Xiang D., Wang X., Jia C., Lee T., Guo X. Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016;116:4318–4440. doi: 10.1021/acs.chemrev.5b00680. PubMed DOI

Guo X., Small J.P., Klare J.E., Wang Y., Purewal M.S., Tam I.W., Hong B.H., Caldwell R., Huang L., O’Brien S. Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules. Science. 2006;311:356–359. doi: 10.1126/science.1120986. PubMed DOI

Osorio E.A., Moth-Poulsen K., van der Zant H.S.J., Paaske J., Hedegård P., Flensberg K., Bendix J., Bjørnholm T. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett. 2010;10:105–110. doi: 10.1021/nl9029785. PubMed DOI

Sakamoto R., Wu K.-H., Matsuoka R., Maeda H., Nishihara H. π-Conjugated bis(terpyridine)metal complex molecular wires. Chem. Soc. Rev. 2015;44:7698–7714. doi: 10.1039/C5CS00081E. PubMed DOI

Sakamoto R., Ohirabaru Y., Matsuoka R., Maeda H., Katagiri S., Nishihara H. Orthogonal bis(terpyridine)–Fe(II) metal complex oligomer wires on a tripodal scaffold: Rapid electron transport. Chem. Commun. 2013;49:7108–7110. doi: 10.1039/c3cc42478b. PubMed DOI

Wu K.-H., Sakamoto R., Maeda H., Jia Han Phua E., Nishihara H. Ultralong π-Conjugated Bis(terpyridine)metal Polymer Wires Covalently Bound to a Carbon Electrode: Fast Redox Conduction and Redox Diode Characteristics. Molecules. 2021;26:4267. doi: 10.3390/molecules26144267. PubMed DOI PMC

Maeda H., Sakamoto R., Nishihara H. Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. Coord. Chem. Rev. 2017;346:139–149. doi: 10.1016/j.ccr.2017.02.013. DOI

Ozawa H., Baghernejad M., Al-Owaedi O.A., Kaliginedi V., Nagashima T., Ferrer J., Wandlowski T., García-Suárez V.M., Broekmann P., Lambert C.J., et al. Synthesis and Single-Molecule Conductance Study of Redox-Active Ruthenium Complexes with Pyridyl and Dihydrobenzo[b]thiophene Anchoring Groups. Chem. Eur. J. 2016;22:12732–12740. doi: 10.1002/chem.201600616. PubMed DOI

Tanaka Y., Kato Y., Sugimoto K., Kawano R., Tada T., Fujii S., Kiguchi M., Akita M. Single-molecule junctions of multinuclear organometallic wires: Long-range carrier transport brought about by metal–metal interaction. Chem. Sci. 2021;12:4338–4344. doi: 10.1039/D0SC06613C. PubMed DOI PMC

Mennicken M., Peter S.K., Kaulen C., Simon U., Karthäuser S. Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes. Beilstein J. Nanotechnol. 2022;13:219–229. doi: 10.3762/bjnano.13.16. PubMed DOI PMC

Lindner M., Valášek M., Homberg J., Edelmann K., Gerhard L., Wulfhekel W., Fuhr O., Wächter T., Zharnikov M., Kolivoška V., et al. Importance of the anchor group position (Para ver-sus Meta) in tetraphenylmethane tripods: Synthesis and self-assembly features. Chem. Eur. J. 2016;22:13218–13235. doi: 10.1002/chem.201602019. PubMed DOI

Sebechlebská T., Šebera J., Kolivoška V., Lindner M., Gasior J., Mészáros G., Valášek M., Mayor M., Hromadová M. Investigation of the geometrical arrangement and single molecule charge transport in self-assembled monolayers of molecular towers based on tetraphenylmethane tripod. Electrochim. Acta. 2017;258:1191–1200. doi: 10.1016/j.electacta.2017.11.174. DOI

Wei C., He Y., Shi X., Song Z. Terpyridine-metal complexes: Applications in catalysis and supramolecular chemistry. Coord. Chem. Rev. 2019;385:14–31. doi: 10.1016/j.ccr.2019.01.005. PubMed DOI PMC

Higgins S.J., Nichols R.J. Metal/molecule/metal junction studies of organometallic and coordination complexes; What can transition metals do for molecular electronics? Polyhedron. 2018;140:25–34. doi: 10.1016/j.poly.2017.10.022. DOI

Bu D., Xiong Y., Tan Y.N., Meng M., Low P.J., Kuang D.-B., Liu C.Y. Understanding the charge transport properties of redox active metal–organic conjugated wires. Chem. Sci. 2018;9:3438–3450. doi: 10.1039/C7SC04727D. PubMed DOI PMC

Ferreira Q., Bragança A.M., Alcácer L., Morgado J. Conductance of Well-Defined Porphyrin Self-Assembled Molecular Wires up to 14 nm in Length. J. Phys. Chem. C. 2014;118:7229–7234. doi: 10.1021/jp501122n. DOI

Sakamoto R., Katagiri S., Maeda H., Nishimori Y., Miyashita S., Nishihara H. Electron Transport Dynamics in Redox-Molecule-Terminated Branched Oligomer Wires on Au(111) J. Am. Chem. Soc. 2015;137:734–741. doi: 10.1021/ja509470w. PubMed DOI

Tuccitto N., Ferri V., Cavazzini M., Quici S., Zhavnerko G., Licciardello A., Rampi M.A. Highly conductive ~40-nm-long molecular wires assembled by stepwise incorporation of metal centres. Nat. Mater. 2009;8:41–46. doi: 10.1038/nmat2332. PubMed DOI

Maeda H., Sakamoto R., Nishihara H. Rapid Electron Transport Phenomenon in the Bis(terpyridine) Metal Complex Wire: Marcus Theory and Electrochemical Impedance Spectroscopy Study. J. Phys. Chem. Lett. 2015;6:3821–3826. doi: 10.1021/acs.jpclett.5b01725. PubMed DOI

Ryota S., Shunsuke K., Hiroaki M., Hiroshi N. Triarylamine-conjugated Bis(terpyridine)–Iron(II) Complex Wires: Rapid and Long-range Electron-transport Ability. Chem. Lett. 2013;42:553–555.

Musumeci C., Zappalà G., Martsinovich N., Orgiu E., Schuster S., Quici S., Zharnikov M., Troisi A., Licciardello A., Samorì P. Nanoscale Electrical Investigation of Layer-by-Layer Grown Molecular Wires. Adv. Mater. 2014;26:1688–1693. doi: 10.1002/adma.201304848. PubMed DOI

Sedghi G., Esdaile L.J., Anderson H.L., Martin S., Bethell D., Higgins S.J., Nichols R.J. Comparison of the Conductance of Three Types of Porphyrin-Based Molecular Wires: β,meso,β-Fused Tapes, meso-Butadiyne-Linked and Twisted meso-meso Linked Oligomers. Adv. Mater. 2012;24:653–657. doi: 10.1002/adma.201103109. PubMed DOI

Sedghi G., García-Suárez V.M., Esdaile L.J., Anderson H.L., Lambert C.J., Martín S., Bethell D., Higgins S.J., Elliott M., Bennett N., et al. Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat. Nanotechnol. 2011;6:517–523. doi: 10.1038/nnano.2011.111. PubMed DOI

Bruce R.C., Wang R., Rawson J., Therien M.J., You W. Valence Band Dependent Charge Transport in Bulk Molecular Electronic Devices Incorporating Highly Conjugated Multi-[(Porphinato)Metal] Oligomers. J. Am. Chem. Soc. 2016;138:2078–2081. doi: 10.1021/jacs.5b10772. PubMed DOI

Li Z., Park T.-H., Rawson J., Therien M.J., Borguet E. Quasi-Ohmic Single Molecule Charge Transport through Highly Conjugated meso-to-meso Ethyne-Bridged Porphyrin Wires. Nano Lett. 2012;12:2722–2727. doi: 10.1021/nl2043216. PubMed DOI

Figgemeier E., Merz L., Hermann B.A., Zimmermann Y.C., Housecroft C.E., Güntherodt H.-J., Constable E.C. Self-Assembled Monolayers of Ruthenium and Osmium Bis-Terpyridine Complexes–Insights of the Structure and Interaction Energies by Combining Scanning Tunneling Microscopy and Electrochemistry. J. Phys. Chem. B. 2003;107:1157–1162. doi: 10.1021/jp026522d. DOI

Šebera J., Kolivoška V., Valášek M., Gasior J., Sokolová R., Mészáros G., Hong W., Mayor M., Hromadová M. Tuning Charge Transport Properties of Asymmetric Molecular Junctions. J. Phys. Chem. C. 2017;121:12885–12894. doi: 10.1021/acs.jpcc.7b01105. DOI

Valášek M., Lindner M., Mayor M. Rigid multipodal platforms for metal surface. Beilstein J. Nanotechnol. 2016;7:374–405. doi: 10.3762/bjnano.7.34. PubMed DOI PMC

Valášek M., Mayor M. Spatial and Lateral Control of Functionality by Rigid Molecular Platforms. Chem. Eur. J. 2017;23:13538–13548. doi: 10.1002/chem.201703349. PubMed DOI

Kolivoška V., Šebera J., Sebechlebská T., Lindner M., Gasior J., Mészáros G., Mayor M., Valášek M., Hromadová M. Probabilistic mapping of single molecule junction configurations as a tool to achieve desired geometry of asymmetric tripodal molecules. Chem. Commun. 2019;55:3351–3354. doi: 10.1039/C8CC09681C. PubMed DOI

Šebera J., Lindner M., Gasior J., Meszáros G., Fuhr O., Mayor M., Valášek M., Kolivoška V., Hromadová M. Tuning contact conductance of anchoring groups in single molecule junctions by molecular design. Nanoscale. 2019;11:12959–12964. doi: 10.1039/C9NR04071D. PubMed DOI

Nováková Lachmanová Š., Vavrek F., Sebechlebská T., Kolivoška V., Valášek M., Hromadová M. Charge transfer in self-assembled monolayers of molecular conductors containing tripodal anchor and terpyridine-metal redox switching element. Electrochim. Acta. 2021;384:138302. doi: 10.1016/j.electacta.2021.138302. DOI

Yang G., Liu G. New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy. J. Phys. Chem. B. 2003;107:8746–8759. doi: 10.1021/jp0219810. DOI

Palmer R.E., Guo Q. Imaging thin films of organic molecules with the scanning tunnelling microscope. Phys. Chem. Chem. Phys. 2002;4:4275–4284. doi: 10.1039/b202462d. DOI

Petrov E.G. Superexchange Nonresonant Tunneling Current across a Molecular Wire. JETP Lett. 2018;108:302–311. doi: 10.1134/S0021364018170101. DOI

Simmons J.G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963;34:1793–1803. doi: 10.1063/1.1702682. DOI

Finklea H.O., Hanshew D.D. Electron-Transfer Kinetics in Organized Thiol Monolayers with Attached Pentaammine(pyridine)ruthenium Redox Centers. J. Am. Chem. Soc. 1992;114:3173–3181. doi: 10.1021/ja00035a001. DOI

Nováková Lachmanová Š., Kolivoška V., Šebera J., Gasior J., Mészáros G., Dupeyre G., Lainé P.P., Hromadová M. Environmental Control of Single-Molecule Junction Evolution and Conductance: A Case Study of Expanded Pyridinium Wiring. Angew. Chem. Int. Ed. 2021;60:4732–4739. doi: 10.1002/anie.202013882. PubMed DOI PMC

Duncan T.V., Ishizuka T., Therien M.J. Molecular engineering of in-tensely near-infrared absorbing excited states in highly conjugated oligo(porphinato)zinc−(Polypyridyl)metal(II) supermolecules. J. Am. Chem. Soc. 2007;129:9691–9703. doi: 10.1021/ja0707512. PubMed DOI

Trasatti S., Petrii O.A. Real surface area measurements in electrochemistry. Pure Appl. Chem. 1991;63:711–734. doi: 10.1351/pac199163050711. DOI

Pobelov I.V. Ph.D. Thesis. RWTH Aachen University; Aachen, Germany: 2008. Electron Transport Studies—An Electrochemical Scanning Tunneling Microscopy Approach.

Gwyddion—Free SPM Data Analysis Software. [(accessed on 6 September 2022)]. Available online: http://gwyddion.net/

Becke A.D. Density-Functional Thermochemistry. 3. The Role of Exact Exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Ditchfield R., Hehre W.J., Pople J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI

Francl M.M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon M.S., DeFrees D.J., Pople J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI

Gordon M.S., Binkley J.S., Pople J.A., Pietro W.J., Hehre W.J. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982;104:2797–2803. doi: 10.1021/ja00374a017. DOI

Hariharan P.C., Pople J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta. 1973;28:213–222. doi: 10.1007/BF00533485. DOI

Hehre W.J., Ditchfield R., Pople J.A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972;56:2257–2261. doi: 10.1063/1.1677527. DOI

Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985;82:299–310. doi: 10.1063/1.448975. DOI

Tomasi J., Mennucci B., Cammi R. Quantum mechanical continuum solvation models. Chem. Rev. 2005;105:2999–3094. doi: 10.1021/cr9904009. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision E.01. Gaussian, Inc.; Wallingford, UK: 2016.

Stewart J.J.P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013;19:1–32. doi: 10.1007/s00894-012-1667-x. PubMed DOI PMC

Te Velde G., Bickelhaupt F.M., Baerends E.J., Fonseca Guerra C., van Gisbergen S.J., Snijders J.G., Ziegler T. Chemistry with ADF. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI

Řezáč J., Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...