Environmental Control of Single-Molecule Junction Evolution and Conductance: A Case Study of Expanded Pyridinium Wiring

. 2021 Feb 23 ; 60 (9) : 4732-4739. [epub] 20210107

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33205862

Grantová podpora
18-04682S Grantová Agentura České Republiky
RVO: 61388955 Akademie Věd České Republiky
PHC Barrande, 34012SC French Ministries of Foreign Affairs and of Education and Research
ANR-14-CE05-0002 Agence Nationale de la Recherche
K128168 OTKA

Environmental control of single-molecule junction evolution and conductance was demonstrated for expanded pyridinium molecules by scanning tunneling microscopy break junction method and interpreted by quantum transport calculations including solvent molecules explicitly. Fully extended and highly conducting molecular junctions prevail in water environment as opposed to short and less conducting junctions formed in non-solvating mesitylene. A theoretical approach correctly models single-molecule conductance values considering the experimental junction length. Most pronounced difference in the molecular junction formation and conductance was identified for a molecule with the highest stabilization energy on the gold substrate confirming the importance of molecule-electrode interactions. Presented concept of tuning conductance through molecule-electrode interactions in the solvent-driven junctions can be used in the development of new molecular electronic devices.

Zobrazit více v PubMed

Leary E., Höbenreich H., Higgins S. J., van Zalinge H., Haiss W., Nichols R. J., Finch C. M., Grace I., Lambert C. J., McGrath R., Smerdon J., Phys. Rev. Lett. 2009, 102, 086801. PubMed

Fatemi V., Kamenetska M., Neaton J. B., Venkataraman L., Nano Lett. 2011, 11, 1988–1992. PubMed

Kotiuga M., Darancet P., Arroyo C. R., Venkataraman L., Neaton J. B., Nano Lett. 2015, 15, 4498–4503. PubMed

Capozzi B., Xia J., Adak O., Dell E. J., Liu Z.-F., Taylor J. C., Neaton J. B., Campos L. M., Venkataraman L., Nat. Nanotechnol. 2015, 10, 522–527. PubMed

Bâldea I., Nanoscale 2013, 5, 9222–9230. PubMed

Milan D. C., Al-Owaedi O. A., Oerthel M.-Ch., Marqués-González S., Brooke R. J., Bryce M. R., Cea P., Ferrer J., Higgins S. J., Lambert C. J., Low P. J., Manrique D. Z., Martin S., Nichols R. J., Schwarzacher W., García-Suárez V. M., J. Phys. Chem. C 2016, 120, 15666–15674.

Long D. P., Lazorcik J. L., Mantooth B. A., Moore M. H., Ratner M. A., Troisi A., Yao Y., Ciszek J. W., Tour J. M., Shashidhar R., Nat. Mater. 2006, 5, 901–908. PubMed

Li X., Hihath J., Chen F., Masuda T., Zang L., Tao N., J. Am. Chem. Soc. 2007, 129, 11535–11542. PubMed

Gunasekaran S., Hernangómez-Pérez D., Davydenko I., Marder S., Evers F., Venkataraman L., Nano Lett. 2018, 18, 6387–6391. PubMed

Li Z.-L., Yi X.-H., Liu R., Bi J.-J., Fu H.-Y., Zhang G.-P., Song Y.-Z., Wang Ch.-K., Sci. Rep. 2017, 7, 4195. PubMed PMC

Š. Lachmanová, J. Šebera, J. Gasior, G. Dupeyre, P. P. Lainé, G. Mészáros, M. Hromadová, Proceedings of 37th International Conference on Modern Electrochemical Methods, Jetřichovice, Czech Republic, May 15–19 (Eds.: T. Navrátil, M. Fojta, K. Schwarzová), 2017, pp. 118–122.

Nakashima S., Takahashi Y., Kiguchi M., Beilstein J. Nanotechnol. 2011, 2, 755–759. PubMed PMC

Zhou C., Li X., Gong Z., Jia Ch., Lin Y., Gu Ch., He G., Zhong Y., Yang J., Guo X., Nat. Commun. 2018, 9, 807. PubMed PMC

Kolivoška V., Šebera J., Severa L., Mészáros G., Sokolová R., Gasior J., Kocábová J., Hamill J. M., Pospíšil L., Hromadová M., ChemElectroChem 2019, 6, 5856–5863.

Tang Z., Hou S., Wu Q., Tan Z., Zheng J., Li R., Liu J., Yang Y., Sadeghi H., Shi J., Grace I., Lambert C. J., Hong W., Sci. Bull. 2020, 65, 944–950. PubMed

Hosseini S., Madden Ch., Hihath J., Guo S., Zang L., Li Z., J. Phys. Chem. C 2016, 120, 22646–22654.

Capozzi B., Chen Q., Darancet P., Kotiuga M., Buzzeo M., Neaton J. B., Nuckolls C., Venkataraman L., Nano Lett. 2014, 14, 1400–1404. PubMed

Capozzi B., Low J. Z., Xia J., Liu Z.-F., Neaton J. B., Campos L., Venkataraman L., Nano Lett. 2016, 16, 3949–3954. PubMed

Nichols R. J., Higgins S. J., Acc. Chem. Res. 2016, 49, 2640–2648. PubMed

Kay N. J., Higgins S. J., Jeppesen J. O., Leary E., Lycoops J., Ulstrup J., Nichols R. J., J. Am. Chem. Soc. 2012, 134, 16817–16826. PubMed

Xu B., Xiao X., Yang X., Zang L., Tao N., J. Am. Chem. Soc. 2005, 127, 2386–2387. PubMed

Leary E., Higgins S. J., van Zalinge H., Haiss W., Nichols R. J., Nygaard S., Jeppesen J. O., Ulstrup J., J. Am. Chem. Soc. 2008, 130, 12204–12205. PubMed

Kolivoška V., Moreno-García P., Kaliginedi V., Hong W., Mayor M., Weibel N., Wandlowski T., Electrochim. Acta 2013, 110, 709–717.

Cheung K. C. M., Chen X., Albrecht T., Kornyshev A. A., J. Phys. Chem. C 2016, 120, 3089–3106.

Darwish N., Díez-Pérez I., Da Silva P., Tao N., Gooding J. J., Paddon-Row M. N., Angew. Chem. Int. Ed. 2012, 51, 3203–3206; PubMed

Angew. Chem. 2012, 124, 3257–3260.

Baghernejad M., Manrique D. Z., Li C., Pope T., Zhumaev U., Pobelov I., Moreno-García P., Kaliginedi V., Huang C., Hong W., Lambert C., Wandlowski T., Chem. Commun. 2014, 50, 15975–15987. PubMed

Xu B., Tao N. J., Science 2003, 301, 1221–1223. PubMed

Luka-Guth K., Hambsch S., Bloch A., Ehrenreich P., Briechle B. M., Kilibarda F., Sendler T., Sysoiev D., Huhn T., Erbe A., Scheer E., Beilstein J. Nanotechnol. 2016, 7, 1055–1067. PubMed PMC

Osorio H. M., Catarelli S., Cea P., Gluyas J. B. G., Hartl F., Higgins S. J., Leary E., Low P. J., Martín S., Nichols R. J., Tory J., Ulstrup J., Vezzoli A., Milan D. C., Zeng Q., J. Am. Chem. Soc. 2015, 137, 14319–14328. PubMed

Zhang F., Wu X.-H., Zhou Y.-F., Wang Y.-H., Zhou X.-S., Shao Y., Li J.-F., Jin S., Zheng J.-F., ChemElectroChem 2020, 7, 1337–1341.

Bâldea I., Köppel H., Wenzel W., Phys. Chem. Chem. Phys. 2013, 15, 1918–1928. PubMed

Nichols R. J., Haiss W., Higgins S. J., Leary E., Martin S., Bethell D., Phys. Chem. Chem. Phys. 2010, 12, 2801–2815. PubMed

Fortage J., Peltier C., Perruchot Ch., Takemoto Y., Teki Y., Bedioui F., Marvaud V., Dupeyre G., Pospíšil L., Adamo C., Hromadová M., Ciofini I., Lainé P. P., J. Am. Chem. Soc. 2012, 134, 2691–2705. PubMed

Nováková Lachmanová Š., Šebera J., Kolivoška V., Gasior J., Mészáros G., Dupeyre G., Lainé P. P., Hromadová M., Electrochim. Acta 2018, 264, 301–311.

Berlin Y. A., Hutchison G. R., Rempala P., Ratner M. A., Michl J., J. Phys. Chem. A 2003, 107, 3970–3980;

Valášek M., Pecka J., Jindřich J., Calleja G., Craig P. R., Michl J., J. Org. Chem. 2005, 70, 405–412; PubMed

Hromadová M., Kolivoška V., Sokolová R., Gál M., Pospíšil L., Valášek M., Langmuir 2010, 26, 17232–17236; PubMed

Kolivoška V., Gál M., Pospíšil L., Valášek M., Hromadová M., Phys. Chem. Chem. Phys. 2011, 13, 11422–11429; PubMed

Kolivoška V., Valášek M., Gál M., Sokolová R., Bulíčková J., Pospíšil L., Mészáros G., Hromadová M., J. Phys. Chem. Lett. 2013, 4, 589–595; PubMed

Nováková Lachmanová Š., Dupeyre G., Lainé P. P., Hromadová M., Langmuir 2018, 34, 6405–6412. PubMed

As regards the possible role of counterions, due to the recognized weak nucleophilicity of tetrafluoroborate anion, no specific and close interaction is expected to occur between electrophilic wires and these counterions. This is true all the more in water featuring a high dielectric constant (ϵ=80.1) and high solvating capability thanks to its high nucleophilicity (Gutman donor number is 33 kcal mol−1). On the other hand, in mesitylene (ϵ=2.4), only non-specific electrostatic interactions are expected, which cannot impact on charge transport by anion-induced charge localization.

Šebera J., Kolivoška V., Valášek M., Gasior J., Sokolová R., Mészáros G., Hong W., Mayor M., Hromadová M., J. Phys. Chem. C 2017, 121, 12885–12894.

Bâldea I., J. Phys. Chem. C 2014, 118, 8676–8684.

Landauer R., J. Phys. Condens. Matter 1989, 1, 8099–8110.

Datta S., Electronic transport in mesoscopic systems, Cambridge University Press, Cambridge, 1997.

Heras J. M., Viscido L., Appl. Surf. Sci. 1980, 4, 238–241.

Hong W., Manrique D. Z., Moreno-García P., Gulcur M., Mishchenko A., Lambert C. J., Bryce M. R., Wandlowski T., J. Am. Chem. Soc. 2012, 134, 2292–2304. PubMed

Šebera J., Sebechlebská T., Nováková Lachmanová Š., Gasior J., Moreno Garcia P., Mészáros G., Valášek M., Kolivoška V., Hromadová M., Electrochim. Acta 2019, 301, 267–273.

Fortage J., Peltier C., Nastasi F., Puntoriero F., Tuyèras F., Griveau S., Bedioui F., Adamo C., Ciofini I., Campagna S., Lainé P. P., J. Am. Chem. Soc. 2010, 132, 16700–16713. PubMed

Venkataraman L., Klare J. E., Nuckolls C., Hybertsen M. S., Steigerwald M. L., Nature 2006, 442, 904–907. PubMed

Mishchenko A., Vonlanthen D., Meded V., Bürkle M., Li C., Pobelov I. V., Bagrets A., Viljas J. K., Pauly F., Evers F., Mayor M., Wandlowski T., Nano Lett. 2010, 10, 156–163. PubMed

Maiti S. K., Physica E 2014, 61, 125–128.

Hromadová M., Kolivoška V. in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Vol. 5 (Ed.: Wandelt K.), Elsevier, Amsterdam, 2018, pp. 271–280.

Aradhya S. V., Frei M., Hybertsen M. S., Venkataraman L., Nat. Mater. 2012, 11, 872–876. PubMed

González M. T., Zhao X., Manrique D. Z., Miguel D., Leary E., Gulcur M., Batsanov A. S., Rubio-Bollinger G., Lambert C. J., Bryce M. R., Agraït N., J. Phys. Chem. C 2014, 118, 21655–21662.

Fortage J., Tuyèras F., Peltier C., Dupeyre G., Calboréan A., Bedioui F., Ochsenbein P., Puntoriero F., Campagna S., Ciofini I., Lainé P. P., J. Phys. Chem. A 2012, 116, 7880–7891. PubMed

Fortage J., Tuyèras F., Ochsenbein P., Puntoriero F., Nastasi F., Campagna S., Griveau S., Bedioui F., Ciofini I., Lainé P. P., Chem. Eur. J. 2010, 16, 11047–11063. PubMed

Yasini P., Afsari S., Peng H., Pikma P., Perdew J. P., Borguet E., J. Am. Chem. Soc. 2019, 141, 10109–10116. PubMed

Afsari S., Yasini P., Peng H., Perdew J. P., Borguet E., Angew. Chem. Int. Ed. 2019, 58, 14275–14280; PubMed

Angew. Chem. 2019, 131, 14413–14418.

Mezei G., Balogh Z., Magyarkuti A., Halbritter A., J. Phys. Chem. Lett. 2020, 11, 8053–8059. PubMed PMC

Bonin J., Costentin C., Robert M., Savéant J. M., Org. Biomol. Chem. 2011, 9, 4064–4069. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...