Environmental Control of Single-Molecule Junction Evolution and Conductance: A Case Study of Expanded Pyridinium Wiring
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-04682S
Grantová Agentura České Republiky
RVO: 61388955
Akademie Věd České Republiky
PHC Barrande, 34012SC
French Ministries of Foreign Affairs and of Education and Research
ANR-14-CE05-0002
Agence Nationale de la Recherche
K128168
OTKA
PubMed
33205862
PubMed Central
PMC7986070
DOI
10.1002/anie.202013882
Knihovny.cz E-zdroje
- Klíčová slova
- expanded pyridiniums, molecular electronics, scanning tunneling microscopy, single-molecule conductance, solvent gating,
- Publikační typ
- časopisecké články MeSH
Environmental control of single-molecule junction evolution and conductance was demonstrated for expanded pyridinium molecules by scanning tunneling microscopy break junction method and interpreted by quantum transport calculations including solvent molecules explicitly. Fully extended and highly conducting molecular junctions prevail in water environment as opposed to short and less conducting junctions formed in non-solvating mesitylene. A theoretical approach correctly models single-molecule conductance values considering the experimental junction length. Most pronounced difference in the molecular junction formation and conductance was identified for a molecule with the highest stabilization energy on the gold substrate confirming the importance of molecule-electrode interactions. Presented concept of tuning conductance through molecule-electrode interactions in the solvent-driven junctions can be used in the development of new molecular electronic devices.
Zobrazit více v PubMed
Leary E., Höbenreich H., Higgins S. J., van Zalinge H., Haiss W., Nichols R. J., Finch C. M., Grace I., Lambert C. J., McGrath R., Smerdon J., Phys. Rev. Lett. 2009, 102, 086801. PubMed
Fatemi V., Kamenetska M., Neaton J. B., Venkataraman L., Nano Lett. 2011, 11, 1988–1992. PubMed
Kotiuga M., Darancet P., Arroyo C. R., Venkataraman L., Neaton J. B., Nano Lett. 2015, 15, 4498–4503. PubMed
Capozzi B., Xia J., Adak O., Dell E. J., Liu Z.-F., Taylor J. C., Neaton J. B., Campos L. M., Venkataraman L., Nat. Nanotechnol. 2015, 10, 522–527. PubMed
Bâldea I., Nanoscale 2013, 5, 9222–9230. PubMed
Milan D. C., Al-Owaedi O. A., Oerthel M.-Ch., Marqués-González S., Brooke R. J., Bryce M. R., Cea P., Ferrer J., Higgins S. J., Lambert C. J., Low P. J., Manrique D. Z., Martin S., Nichols R. J., Schwarzacher W., García-Suárez V. M., J. Phys. Chem. C 2016, 120, 15666–15674.
Long D. P., Lazorcik J. L., Mantooth B. A., Moore M. H., Ratner M. A., Troisi A., Yao Y., Ciszek J. W., Tour J. M., Shashidhar R., Nat. Mater. 2006, 5, 901–908. PubMed
Li X., Hihath J., Chen F., Masuda T., Zang L., Tao N., J. Am. Chem. Soc. 2007, 129, 11535–11542. PubMed
Gunasekaran S., Hernangómez-Pérez D., Davydenko I., Marder S., Evers F., Venkataraman L., Nano Lett. 2018, 18, 6387–6391. PubMed
Li Z.-L., Yi X.-H., Liu R., Bi J.-J., Fu H.-Y., Zhang G.-P., Song Y.-Z., Wang Ch.-K., Sci. Rep. 2017, 7, 4195. PubMed PMC
Š. Lachmanová, J. Šebera, J. Gasior, G. Dupeyre, P. P. Lainé, G. Mészáros, M. Hromadová, Proceedings of 37th International Conference on Modern Electrochemical Methods, Jetřichovice, Czech Republic, May 15–19 (Eds.: T. Navrátil, M. Fojta, K. Schwarzová), 2017, pp. 118–122.
Nakashima S., Takahashi Y., Kiguchi M., Beilstein J. Nanotechnol. 2011, 2, 755–759. PubMed PMC
Zhou C., Li X., Gong Z., Jia Ch., Lin Y., Gu Ch., He G., Zhong Y., Yang J., Guo X., Nat. Commun. 2018, 9, 807. PubMed PMC
Kolivoška V., Šebera J., Severa L., Mészáros G., Sokolová R., Gasior J., Kocábová J., Hamill J. M., Pospíšil L., Hromadová M., ChemElectroChem 2019, 6, 5856–5863.
Tang Z., Hou S., Wu Q., Tan Z., Zheng J., Li R., Liu J., Yang Y., Sadeghi H., Shi J., Grace I., Lambert C. J., Hong W., Sci. Bull. 2020, 65, 944–950. PubMed
Hosseini S., Madden Ch., Hihath J., Guo S., Zang L., Li Z., J. Phys. Chem. C 2016, 120, 22646–22654.
Capozzi B., Chen Q., Darancet P., Kotiuga M., Buzzeo M., Neaton J. B., Nuckolls C., Venkataraman L., Nano Lett. 2014, 14, 1400–1404. PubMed
Capozzi B., Low J. Z., Xia J., Liu Z.-F., Neaton J. B., Campos L., Venkataraman L., Nano Lett. 2016, 16, 3949–3954. PubMed
Nichols R. J., Higgins S. J., Acc. Chem. Res. 2016, 49, 2640–2648. PubMed
Kay N. J., Higgins S. J., Jeppesen J. O., Leary E., Lycoops J., Ulstrup J., Nichols R. J., J. Am. Chem. Soc. 2012, 134, 16817–16826. PubMed
Xu B., Xiao X., Yang X., Zang L., Tao N., J. Am. Chem. Soc. 2005, 127, 2386–2387. PubMed
Leary E., Higgins S. J., van Zalinge H., Haiss W., Nichols R. J., Nygaard S., Jeppesen J. O., Ulstrup J., J. Am. Chem. Soc. 2008, 130, 12204–12205. PubMed
Kolivoška V., Moreno-García P., Kaliginedi V., Hong W., Mayor M., Weibel N., Wandlowski T., Electrochim. Acta 2013, 110, 709–717.
Cheung K. C. M., Chen X., Albrecht T., Kornyshev A. A., J. Phys. Chem. C 2016, 120, 3089–3106.
Darwish N., Díez-Pérez I., Da Silva P., Tao N., Gooding J. J., Paddon-Row M. N., Angew. Chem. Int. Ed. 2012, 51, 3203–3206; PubMed
Angew. Chem. 2012, 124, 3257–3260.
Baghernejad M., Manrique D. Z., Li C., Pope T., Zhumaev U., Pobelov I., Moreno-García P., Kaliginedi V., Huang C., Hong W., Lambert C., Wandlowski T., Chem. Commun. 2014, 50, 15975–15987. PubMed
Xu B., Tao N. J., Science 2003, 301, 1221–1223. PubMed
Luka-Guth K., Hambsch S., Bloch A., Ehrenreich P., Briechle B. M., Kilibarda F., Sendler T., Sysoiev D., Huhn T., Erbe A., Scheer E., Beilstein J. Nanotechnol. 2016, 7, 1055–1067. PubMed PMC
Osorio H. M., Catarelli S., Cea P., Gluyas J. B. G., Hartl F., Higgins S. J., Leary E., Low P. J., Martín S., Nichols R. J., Tory J., Ulstrup J., Vezzoli A., Milan D. C., Zeng Q., J. Am. Chem. Soc. 2015, 137, 14319–14328. PubMed
Zhang F., Wu X.-H., Zhou Y.-F., Wang Y.-H., Zhou X.-S., Shao Y., Li J.-F., Jin S., Zheng J.-F., ChemElectroChem 2020, 7, 1337–1341.
Bâldea I., Köppel H., Wenzel W., Phys. Chem. Chem. Phys. 2013, 15, 1918–1928. PubMed
Nichols R. J., Haiss W., Higgins S. J., Leary E., Martin S., Bethell D., Phys. Chem. Chem. Phys. 2010, 12, 2801–2815. PubMed
Fortage J., Peltier C., Perruchot Ch., Takemoto Y., Teki Y., Bedioui F., Marvaud V., Dupeyre G., Pospíšil L., Adamo C., Hromadová M., Ciofini I., Lainé P. P., J. Am. Chem. Soc. 2012, 134, 2691–2705. PubMed
Nováková Lachmanová Š., Šebera J., Kolivoška V., Gasior J., Mészáros G., Dupeyre G., Lainé P. P., Hromadová M., Electrochim. Acta 2018, 264, 301–311.
Berlin Y. A., Hutchison G. R., Rempala P., Ratner M. A., Michl J., J. Phys. Chem. A 2003, 107, 3970–3980;
Valášek M., Pecka J., Jindřich J., Calleja G., Craig P. R., Michl J., J. Org. Chem. 2005, 70, 405–412; PubMed
Hromadová M., Kolivoška V., Sokolová R., Gál M., Pospíšil L., Valášek M., Langmuir 2010, 26, 17232–17236; PubMed
Kolivoška V., Gál M., Pospíšil L., Valášek M., Hromadová M., Phys. Chem. Chem. Phys. 2011, 13, 11422–11429; PubMed
Kolivoška V., Valášek M., Gál M., Sokolová R., Bulíčková J., Pospíšil L., Mészáros G., Hromadová M., J. Phys. Chem. Lett. 2013, 4, 589–595; PubMed
Nováková Lachmanová Š., Dupeyre G., Lainé P. P., Hromadová M., Langmuir 2018, 34, 6405–6412. PubMed
As regards the possible role of counterions, due to the recognized weak nucleophilicity of tetrafluoroborate anion, no specific and close interaction is expected to occur between electrophilic wires and these counterions. This is true all the more in water featuring a high dielectric constant (ϵ=80.1) and high solvating capability thanks to its high nucleophilicity (Gutman donor number is 33 kcal mol−1). On the other hand, in mesitylene (ϵ=2.4), only non-specific electrostatic interactions are expected, which cannot impact on charge transport by anion-induced charge localization.
Šebera J., Kolivoška V., Valášek M., Gasior J., Sokolová R., Mészáros G., Hong W., Mayor M., Hromadová M., J. Phys. Chem. C 2017, 121, 12885–12894.
Bâldea I., J. Phys. Chem. C 2014, 118, 8676–8684.
Landauer R., J. Phys. Condens. Matter 1989, 1, 8099–8110.
Datta S., Electronic transport in mesoscopic systems, Cambridge University Press, Cambridge, 1997.
Heras J. M., Viscido L., Appl. Surf. Sci. 1980, 4, 238–241.
Hong W., Manrique D. Z., Moreno-García P., Gulcur M., Mishchenko A., Lambert C. J., Bryce M. R., Wandlowski T., J. Am. Chem. Soc. 2012, 134, 2292–2304. PubMed
Šebera J., Sebechlebská T., Nováková Lachmanová Š., Gasior J., Moreno Garcia P., Mészáros G., Valášek M., Kolivoška V., Hromadová M., Electrochim. Acta 2019, 301, 267–273.
Fortage J., Peltier C., Nastasi F., Puntoriero F., Tuyèras F., Griveau S., Bedioui F., Adamo C., Ciofini I., Campagna S., Lainé P. P., J. Am. Chem. Soc. 2010, 132, 16700–16713. PubMed
Venkataraman L., Klare J. E., Nuckolls C., Hybertsen M. S., Steigerwald M. L., Nature 2006, 442, 904–907. PubMed
Mishchenko A., Vonlanthen D., Meded V., Bürkle M., Li C., Pobelov I. V., Bagrets A., Viljas J. K., Pauly F., Evers F., Mayor M., Wandlowski T., Nano Lett. 2010, 10, 156–163. PubMed
Maiti S. K., Physica E 2014, 61, 125–128.
Hromadová M., Kolivoška V. in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Vol. 5 (Ed.: Wandelt K.), Elsevier, Amsterdam, 2018, pp. 271–280.
Aradhya S. V., Frei M., Hybertsen M. S., Venkataraman L., Nat. Mater. 2012, 11, 872–876. PubMed
González M. T., Zhao X., Manrique D. Z., Miguel D., Leary E., Gulcur M., Batsanov A. S., Rubio-Bollinger G., Lambert C. J., Bryce M. R., Agraït N., J. Phys. Chem. C 2014, 118, 21655–21662.
Fortage J., Tuyèras F., Peltier C., Dupeyre G., Calboréan A., Bedioui F., Ochsenbein P., Puntoriero F., Campagna S., Ciofini I., Lainé P. P., J. Phys. Chem. A 2012, 116, 7880–7891. PubMed
Fortage J., Tuyèras F., Ochsenbein P., Puntoriero F., Nastasi F., Campagna S., Griveau S., Bedioui F., Ciofini I., Lainé P. P., Chem. Eur. J. 2010, 16, 11047–11063. PubMed
Yasini P., Afsari S., Peng H., Pikma P., Perdew J. P., Borguet E., J. Am. Chem. Soc. 2019, 141, 10109–10116. PubMed
Afsari S., Yasini P., Peng H., Perdew J. P., Borguet E., Angew. Chem. Int. Ed. 2019, 58, 14275–14280; PubMed
Angew. Chem. 2019, 131, 14413–14418.
Mezei G., Balogh Z., Magyarkuti A., Halbritter A., J. Phys. Chem. Lett. 2020, 11, 8053–8059. PubMed PMC
Bonin J., Costentin C., Robert M., Savéant J. M., Org. Biomol. Chem. 2011, 9, 4064–4069. PubMed