Surface coating affects behavior of metallic nanoparticles in a biological environment

. 2016 ; 7 () : 246-62. [epub] 20160215

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26977382

Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

Zobrazit více v PubMed

Tai J-T, Lai C-S, Ho H-C, Yeh Y-S, Wang H-F, Ho R-M, Tsai D-H. Langmuir. 2014;30:12755–12764. doi: 10.1021/la5033465. PubMed DOI

Lohse S E, Murphy C J. J Am Chem Soc. 2012;134:15607–15620. doi: 10.1021/ja307589n. PubMed DOI

Dominguez-Medina S, Blankenburg J, Olson J, Landes C F, Link S. ACS Sustainable Chem Eng. 2013;1:833–842. doi: 10.1021/sc400042h. PubMed DOI PMC

Babič M, Horák D, Trchová M, Jendelová P, Glogarová K, Lesný P, Herynek V, Hájek M, Syková E. Bioconjugate Chem. 2008;19:740–750. doi: 10.1021/bc700410z. PubMed DOI

Kittler S, Greulich C, Gebauer J S, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet J M, Vallet-Regi M, Zellner R, Köller M, et al. J Mater Chem. 2010;20:512–518. doi: 10.1039/B914875B. DOI

Yen H-J, Hsu S-H, Tsai C-L. Small. 2009;5:1553–1561. doi: 10.1002/smll.200900126. PubMed DOI

Liu J Y, Hurt R H. Environ Sci Technol. 2010;44:2169–2175. doi: 10.1021/es9035557. PubMed DOI

Walters C, Pool E, Somerset V. Toxicol Environ Chem. 2013;95:1690–1701. doi: 10.1080/02772248.2014.904141. DOI

Pettibone J M, Gigault J, Hackley V A. ACS Nano. 2013;7:2491–2499. doi: 10.1021/nn3058517. PubMed DOI

MacCuspie R I, Allen A J, Hackley V A. Nanotoxicology. 2011;5:140–156. doi: 10.3109/17435390.2010.504311. PubMed DOI

Loza K, Diendorf J, Sengstock C, Ruiz-Gonzalez L, Gonzalez-Calbet J M, Vallet-Regi M, Köller M, Epple M. J Mater Chem B. 2014;2:1634–1643. doi: 10.1039/c3tb21569e. PubMed DOI

Liu J Y, Sonshine D A, Shervani S, Hurt R H. ACS Nano. 2010;4:6903–6913. doi: 10.1021/nn102272n. PubMed DOI PMC

Liu J Y, Wang Z Y, Liu F D, Kane A B, Hurt R H. ACS Nano. 2012;6:9887–9899. doi: 10.1021/nn303449n. PubMed DOI PMC

Stebounova L V, Guio E, Grassian V H. J Nanopart Res. 2011;13:233–244. doi: 10.1007/s11051-010-0022-3. DOI

Hotze E M, Labille J, Alvarez P, Wiesner M R. Environ Sci Technol. 2008;42:4175–4180. doi: 10.1021/es702172w. PubMed DOI

Hussain S M, Braydich-Stolle L K, Schrand A M, Murdock R C, Yu K O, Mattie D M, Schlager J J, Terrones M. Adv Mater. 2009;21:1549–1559. doi: 10.1002/adma.200801395. DOI

Park E-J, Yi J, Kim Y, Choi K, Park K. Toxicol In Vitro. 2010;24:872–878. doi: 10.1016/j.tiv.2009.12.001. PubMed DOI

Zook J M, MacCuspie R I, Locascio L E, Halter M D, Elliott J T. Nanotoxicology. 2011;5:517–530. doi: 10.3109/17435390.2010.536615. PubMed DOI

Tejamaya M, Römer I, Merrifield R C, Lead J R. Environ Sci Technol. 2012;46:7011–7017. doi: 10.1021/es2038596. PubMed DOI

Vidic J, Haque F, Guigner J M, Vidy A, Chevalier C, Stankic S. Langmuir. 2014;30:11366–11374. doi: 10.1021/la501479p. PubMed DOI

Marucco A, Catalano F, Fenoglio I, Turci F, Martra G, Fubini B. Chem Res Toxicol. 2015;28:87–91. doi: 10.1021/tx500366a. PubMed DOI

Leo B F, Chen S, Kyo Y, Herpoldt K-L, Terrill N J, Dunlop I E, McPhail D S, Shaffer M S, Schwander S, Gow A, et al. Environ Sci Technol. 2013;47:11232–11240. doi: 10.1021/es403377p. PubMed DOI PMC

Li X, Lenhart J J, Walker H W. Langmuir. 2012;28:1095–1104. doi: 10.1021/la202328n. PubMed DOI

MacCuspie R I. J Nanopart Res. 2011;13:2893–2908. doi: 10.1007/s11051-010-0178-x. DOI

Sharma V K, Siskova K M, Zboril R, Gardea-Torresdey J L. Adv Colloid Interface Sci. 2014;204:15–34. doi: 10.1016/j.cis.2013.12.002. PubMed DOI

Jiang J, Oberdörster G, Biswas P. J Nanopart Res. 2009;11:77–89. doi: 10.1007/s11051-008-9446-4. DOI

Gebauer J S, Treuel L. J Colloid Interface Sci. 2011;354:546–554. doi: 10.1016/j.jcis.2010.11.016. PubMed DOI

Thanh N T K, Rosenzweig Z. Anal Chem. 2002;74:1624–1628. doi: 10.1021/ac011127p. PubMed DOI

Schulze C, Kroll A, Lehr C-M, Schäfer U F, Becker K, Schnekenburger J, Schulze Isfort C, Landsiedel R, Wohlleben W. Nanotoxicology. 2008;2:51–61. doi: 10.1080/17435390802018378. DOI

Gebauer J S, Malissek M, Simon S, Knauer S K, Maskos M, Stauber R H, Peukert W, Treuel L. Langmuir. 2012;28:9673–9679. doi: 10.1021/la301104a. PubMed DOI

Segets D, Marczak R, Schäfer S, Paula C, Gnichwitz J-F, Hirsch A, Peukert W. ACS Nano. 2011;5:4658–4669. doi: 10.1021/nn200465b. PubMed DOI

Kohut A, Voronov A, Peukert W. Langmuir. 2007;23:504–508. doi: 10.1021/la062465u. PubMed DOI

Gilbert B, Huang F, Zhang H, Waychunas G A, Banfield J F. Science. 2004;305:651–654. doi: 10.1126/science.1098454. PubMed DOI

Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J. Nat Mater. 2008;7:527–538. doi: 10.1038/nmat2206. PubMed DOI

Zook J M, Halter M D, Cleveland D, Long S E. J Nanopart Res. 2012;14:1165. doi: 10.1007/s11051-012-1165-1. DOI

Treuel L, Nienhaus G U. Biophys Rev. 2012;4:137–147. doi: 10.1007/s12551-012-0072-0. PubMed DOI PMC

Walczyk D, Bombelli F B, Monopoli M P, Lynch I, Dawson K A. J Am Chem Soc. 2010;132:5761–5768. doi: 10.1021/ja910675v. PubMed DOI

Moerz S T, Huber P. Langmuir. 2014;30:2729–2737. doi: 10.1021/la404947j. PubMed DOI

Monopoli M P, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli F B, Dawson K A. J Am Chem Soc. 2011;133:2525–2534. doi: 10.1021/ja107583h. PubMed DOI

Lynch I, Salvati A, Dawson K A. Nat Nanotechnol. 2009;4:546–547. doi: 10.1038/nnano.2009.248. PubMed DOI

Shannahan J H, Lai X, Ke P C, Podila R, Brown J M, Witzmann F A. PLoS One. 2013;8:e74001. doi: 10.1371/journal.pone.0074001. PubMed DOI PMC

Park M V D Z, Neigh A M, Vermeulen J P, de la Fonteyne L J J, Verharen H W, Briedé J J, van Loveren H, de Jong W H. Biomaterials. 2011;32:9810–9817. doi: 10.1016/j.biomaterials.2011.08.085. PubMed DOI

El Badawy A M, Silva R G, Morris B, Scheckel K G, Suidan M T, Tolaymat T M. Environ Sci Technol. 2011;45:283–287. doi: 10.1021/es1034188. PubMed DOI

Martin M N, Allen A J, MacCuspie R I, Hackley V A. Langmuir. 2014;30:11442–11452. doi: 10.1021/la502973z. PubMed DOI

Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Pientka Z, Pollert E, Hájek M, Syková E. Bioconjugate Chem. 2007;18:635–644. doi: 10.1021/bc060186c. PubMed DOI

Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Likavčanová K, Kapcalová M, Hájek M, Syková E. J Magn Magn Mater. 2009;321:1539–1547. doi: 10.1016/j.jmmm.2009.02.082. DOI

Vinković Vrček I, Žuntar I, Petlevski R, Pavičić I, Dutour Sikirić M, Ćurlin M, Goessler W. Environ Toxicol. 2014 doi: 10.1002/tox.22081. PubMed DOI

Vinković Vrček I, Pavičić I, Crnković T, Jurašin D, Babič M, Horák D, Lovrić M, Ferhatović L, Ćurlin M, Gajović S. RSC Adv. 2015;5:70787–70807. doi: 10.1039/C5RA14100A. DOI

Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I. J Appl Toxicol. 2015;35:581–592. doi: 10.1002/jat.3081. PubMed DOI

Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, Holecová M, Zbořil R. J Phys Chem C. 2008;112:5825–5834. doi: 10.1021/jp711616v. DOI

Churchman A H, Wallace R, Milne S J, Brown A P, Brydson R, Beales P A. Chem Commun. 2013;49:4172–4174. doi: 10.1039/c3cc37871c. PubMed DOI

Murdock R C, Braydich-Stolle L, Schrand A M, Schlager J J, Hussain S M. Toxicol Sci. 2008;101:239–253. doi: 10.1093/toxsci/kfm240. PubMed DOI

Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson K A, Linse S. Proc Natl Acad Sci U S A. 2007;104:2050–2055. doi: 10.1073/pnas.0608582104. PubMed DOI PMC

Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi M A, Cingolani R, Pompa P P. ACS Nano. 2010;4:7481–7491. doi: 10.1021/nn101557e. PubMed DOI

Simón-Vázquez R, Lozano-Fernández T, Peleteiro-Olmedo M, González-Fernández Á. Colloids Surf, B. 2014;113:198–206. doi: 10.1016/j.colsurfb.2013.08.047. PubMed DOI

Ravindran A, Singh A, Raichur A M, Chandrasekaran N, Mukherjee A. Colloids Surf, B. 2010;76:32–37. doi: 10.1016/j.colsurfb.2009.10.005. PubMed DOI

Yang Q, Liang J, Han H. J Phys Chem B. 2009;113:10454–10458. doi: 10.1021/jp904004w. PubMed DOI

Patil S, Sandberg A, Heckert E, Self W, Seal S. Biomaterials. 2007;28:4600–4607. doi: 10.1016/j.biomaterials.2007.07.029. PubMed DOI PMC

Peters T., Jr . All About Albumin: Biochemistry, Genetics and Medical Applications. 1st ed. San Diego, CA, USA: Academic Press, Inc.; 1996.

Saptarshi S R, Duschl A, Lopata A L. J Nanobiotechnol. 2013;11:26. doi: 10.1186/1477-3155-11-26. PubMed DOI PMC

Dobrovolskaia M A, Patri A K, Zheng J, Clogston J, Ayub D, Aggarwal P, Neun B W, Hall J B, McNeil S E. Nanomedicine. 2009;5:106–117. doi: 10.1016/j.nano.2008.08.001. PubMed DOI PMC

Alkilany A M, Nagaria P K, Hexel C R, Shaw T J, Murphy C J, Wyatt M D. Small. 2009;5:701–708. doi: 10.1002/smll.200801546. PubMed DOI

Khullar P, Singh V, Mahal A, Dave P N, Thakur S, Kaur G, Singh J, Singh Kamboj S, Singh Bakshi M. J Phys Chem C. 2012;116:8834–8843. doi: 10.1021/jp300585d. DOI

Casals E, Pfaller T, Duschl A, Oostingh G J, Puntes V. ACS Nano. 2010;4:3623–3632. doi: 10.1021/nn901372t. PubMed DOI

Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew Chem, Int Ed. 2008;48:60–103. doi: 10.1002/anie.200802248. PubMed DOI PMC

Goesmann H, Feldmann C. Angew Chem, Int Ed. 2010;49:1362–1395. doi: 10.1002/anie.200903053. PubMed DOI

Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G. Trends Biotechnol. 2001;19:15–20. doi: 10.1016/S0167-7799(00)01514-6. PubMed DOI

Lowenstam H A. Science. 1981;211:1126–1131. doi: 10.1126/science.7008198. PubMed DOI

Spring S, Schleifer K-H. Syst Appl Microbiol. 1995;18:147–153. doi: 10.1016/S0723-2020(11)80386-3. DOI

Schüler D, Frankel R B. Appl Microbiol Biotechnol. 1999;52:464–473. doi: 10.1007/s002530051547. PubMed DOI

Kajander E O, Çiftçioglu N. Proc Natl Acad Sci U S A. 1998;95:8274–8279. doi: 10.1073/pnas.95.14.8274. PubMed DOI PMC

Rivadeneyra M-A, Delgado G, Soriano M, Ramos-Cormenzana A, Delgado R. Curr Microbiol. 1999;39:53–57. doi: 10.1007/PL00006827. PubMed DOI

Keefe W E. Infect Immun. 1976;14:590–592. PubMed PMC

Klaus T, Joerger R, Olsson E, Granqvist C-G. Proc Natl Acad Sci U S A. 1999;96:13611–13614. doi: 10.1073/pnas.96.24.13611. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace