Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
PubMed
24406050
DOI
10.1016/j.cis.2013.12.002
PII: S0001-8686(13)00173-5
Knihovny.cz E-zdroje
- Klíčová slova
- Aggregation, Bacteria, Dissolution, Ionic strength, Light, Organisms, Plants, Silver ion, Synthesis,
- MeSH
- Bacteria účinky léků MeSH
- buněčná membrána účinky léků MeSH
- DNA účinky léků MeSH
- exprese genu účinky léků MeSH
- kovové nanočástice chemie toxicita MeSH
- lidé MeSH
- organické látky chemie toxicita MeSH
- povrchové vlastnosti MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostliny účinky léků MeSH
- roztoky MeSH
- stříbro chemie toxicita MeSH
- velikost částic MeSH
- voda chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA MeSH
- organické látky MeSH
- reaktivní formy kyslíku MeSH
- roztoky MeSH
- stříbro MeSH
- voda MeSH
This review paper presents the overview of processes involved in transformation of organic-coated silver nanoparticles (AgNPs) in biological systems and in the aquatic environment. The coating on AgNPs greatly influences the fate, stability, and toxicity of AgNPs in aqueous solutions, biological systems, and the environment. Several organic-coated AgNP systems are discussed to understand their stability and toxicity in biological media and natural water. Examples are presented to demonstrate how a transformation of organic-coated AgNPs in an aqueous solution is affected by the type of coating, pH, kind of electrolyte (mono- or divalent), ionic strength, organic ligands (inorganic and organic), organic matter (fulvic and humic acids), redox conditions (oxic and anoxic), and light. Results of cytotoxicity, genotoxicity, and ecotoxicity of coated AgNPs to food chain members (plants, bacteria, and aquatic and terrestrial organisms) are reviewed. Key factors contributing to toxicity are the size, shape, surface coating, surface charge, and conditions of silver ion release. AgNPs may directly damage the cell membranes, disrupt ATP production and DNA replication, alternate gene expressions, release toxic Ag(+) ion, and produce reactive oxygen species to oxidize biological components of the cell. A progress made on understanding the mechanism of organic-coated AgNP toxicity using different analytical techniques is presented.
Citace poskytuje Crossref.org
Surface coating affects behavior of metallic nanoparticles in a biological environment