Silver Nanoparticles (AgNPs) in Urea Solution in Laboratory Tests and Field Experiments with Crops and Vegetables

. 2022 Jan 24 ; 15 (3) : . [epub] 20220124

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160816

Nanotechnology and nanomaterials, including silver nanoparticles (AgNPs), are increasingly important in modern science, economics, and agriculture. Their biological activity involves influencing plant health, physiological processes, growth, and yields, although they can also be toxic in the environment. A new fertiliser was made based on a urea solution with a relatively low content of AgNPs obtained by the reduction of silver nitrate V. Laboratory tests were used to assess the effect of a fertiliser solution containing 10 ppm AgNPs on the germination of agricultural plant seeds (barley, peas, oilseed rape) and vegetables (radish, cucumber, lettuce) and its foliar application on chlorophyll content, stomatal conductance, and seedling biomass. Field experiments were conducted to assess the effect that a foliar application of 15 ppm AgNPs in working liquid had on physiological plant parameters and yields of rape and cucumber. The AgNPs in the tested fertiliser reduced infestation of the germinating seeds by pathogens and positively affected the physiological processes, productivity, and yields of plants. Plant response depended on plant species and habitat conditions. Reduced pathogen infestation of seeds, higher germination energy, increased chlorophyll content and stomatal conductance, and higher seedling masses all occurred under the influence of AgNPs, mainly in oilseed rape and cucumber, and especially under thermal stress. The beneficial effect of AgNPs on the yield of these plants occurred in years of unfavourable weather conditions. The positive agricultural test results, especially under stress conditions, indicate that fertiliser produced with AgNPs as an ingredient may reduce the use of pesticides and highly concentrated mineral fertilisers. Such a fertiliser is fully in line with the idea of sustainable agriculture. However, research on the effects that AgNPs and fertiliser have on the environment and humans should continue.

Zobrazit více v PubMed

Priestly B.G. Nanotechnology: A promising new technology—But how safe? Med. J. Aust. 2007;186:187–188. doi: 10.5694/j.1326-5377.2007.tb00859.x. PubMed DOI

Siddiqui M.H., Al-Whaibi M., Mohammad F. Nanotechnology and Plant Sciences Nanoparticles and Their Impact on Plants. Springer International Publishing; Cham, Switzerland: 2015.

Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. 2019;25:112. doi: 10.3390/molecules25010112. PubMed DOI PMC

Payal, Pandey P. Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents. Recent Pat. Nanotechnol. 2021;15 doi: 10.2174/1872210515666210120114504. PubMed DOI

Baig N., Kammakakam I., Falath W. Nanomaterials, a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. DOI

Kalkidan Mamo W., Fufa Abunna K., Yonas Tolosa R. A review on nanotechnology and its application in modern veterinary science. Int. J. Nanomater. Nanotechnol. Nanomed. 2021;7:26–31. doi: 10.17352/2455-3492.000041. DOI

Yaqoob A.A., Ibrahim M.N.M., Rafatullah M., Chua Y.S., Ahmad A., Umar K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials. 2020;13:2078. doi: 10.3390/ma13092078. PubMed DOI PMC

Soares S., Sousa J., Pais A., Vitorino C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front. Chem. 2018;6:360. doi: 10.3389/fchem.2018.00360. PubMed DOI PMC

Dahman Y. Nanotechnology and Functional Materials for Engineers. Elsevier; Amsterdam, The Netherlands: 2017.

Goldmann E., Górski M., Klemczak B. Recent Advancements in Carbon Nano-Infused Cementitious Composites. Materials. 2021;14:5176. doi: 10.3390/ma14185176. PubMed DOI PMC

Dutta M.M. Nanomaterials for Food and Agriculture. In: Bhat M., Wani I., Ashraf S., editors. Applications of Nanomaterials in Agriculture, Food Science, and Medicine. IGI Global; Hershey, PA, USA: 2021. pp. 75–97.

Manjunatha R.L., Naik D., Usharani K.V. Nanotechnology application in agriculture: A review. J. Pharmacogn. Phytochem. 2019;8:1073–1083.

Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 2017;15:15–22. doi: 10.1007/s10311-016-0600-4. DOI

Badawy A.A., Abdelfattah N.A.H., Salem S.S., Awad M.F., Fouda A. Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Wheat (Triticum aestivum L.) Plant. Biology. 2021;10:233. doi: 10.3390/biology10030233. PubMed DOI PMC

Salem S.S., Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021;199:344–370. doi: 10.1007/s12011-020-02138-3. PubMed DOI

León-Silva S., Arrieta-Cortes R., Fernández-Luqueño F., López-Valdez F. Agricultural Nanobiotechnology. Springer Science and Business Media LLC; Cham, Switzerland: 2018. Design and Production of Nanofertilizers; pp. 17–31.

Zhao L., Lu L., Wang A., Zhang H., Huang M., Wu H., Xing B., Wang Z., Ji R. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. J. Agric. Food Chem. 2020;68:1935–1947. doi: 10.1021/acs.jafc.9b06615. PubMed DOI

DeRosa M.C., Monreal C., Schnitzer M., Walsh R., Sultan Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010;5:91. doi: 10.1038/nnano.2010.2. PubMed DOI

Singh M.D., Chirag G., Prakash P.O., Mohan M.H., Prakasha G. Nano-Fertilizers is a New Way to Increase Nutrients Use Efficiency in Crop Production. Int. J. Agric. Sci. 2017;9:3831–3833.

Lin D., Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007;150:243–250. doi: 10.1016/j.envpol.2007.01.016. PubMed DOI

Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI

Sanzari I., Leone A., Ambrosone A. Nanotechnology in Plant Science: To Make a Long Story Short. Front. Bioeng. Biotechnol. 2019;7:120. doi: 10.3389/fbioe.2019.00120. PubMed DOI PMC

Lansdown A.B. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006;33:17–34. PubMed

Suresh A.K., Pelletier D.A., Wang W., Moon J.W., Gu B., Mortensen N.P., Allison D.P., Joy D.C., Phelps T.J., Doktycz M.J. Silver nanocrystallites: Biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ. Sci. Technol. 2010;44:5210–5215. doi: 10.1021/es903684r. PubMed DOI

Nowack B., Krug H.F., Height M. Reply to comments on B120 years of nanosilver history: Implications for policy makers. Environ. Sci. Technol. 2011;45:7593–7595. doi: 10.1021/es2017895. PubMed DOI

Kaur P., Thakur R., Choudhary A. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int. J. Sci. Technol. Res. 2012;1:83–86.

Vinković T., Novák O., Strnad M., Goessler W., Jurašin D.D., Paraiković N., Vrček I.V. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ. Res. 2017;156:10–18. doi: 10.1016/j.envres.2017.03.015. PubMed DOI

Alghuthaymi M.A., Almoammar H., Rai M., Said-Galiev E., Abd-Elsalam K.A. Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 2015;29:221–236. doi: 10.1080/13102818.2015.1008194. PubMed DOI PMC

Barros C.H.N., Fulaz S., Stanisic D., Tasic L. Biogenic Nanosilver against Multidrug-Resistant Bacteria (MDRB) Antibiotics. 2018;7:69. doi: 10.3390/antibiotics7030069. PubMed DOI PMC

Mehmood A. Brief overview of the application of silver nanoparticles to improve growth of crop plants. IET Nanobiotechnol. 2018;12:701–705. doi: 10.1049/iet-nbt.2017.0273. PubMed DOI PMC

Kudrinskiy A., Zherebin P., Gusev A., Shapoval O., Pyee J., Lisichkin G., Krutyakov Y. New Relevant Descriptor of Linear QNAR Models for Toxicity Assessment of Silver Nanoparticles. Nanomaterials. 2020;10:1459. doi: 10.3390/nano10081459. PubMed DOI PMC

Wagner A.J., Bleckmann C.A., Murdock R.C., Schrand A.M., Schlager J.J., Hussain S.M. Cellular Interaction of Different Forms of Aluminum Nanoparticles in Rat Alveolar Macrophages. J. Phys. Chem. B. 2007;111:7353–7359. doi: 10.1021/jp068938n. PubMed DOI

Hristozov D., Malsch I. Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health. Sustainability. 2009;1:1161–1194. doi: 10.3390/su1041161. DOI

Mittal D., Kaur G., Singh P., Yadav K., Ali S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Bioeng. Biotechnol. 2020;2:9954. doi: 10.3389/fnano.2020.579954. DOI

ISTA International Rules for Seed Testing. International Seed Testing Association; Bassersdorf, Switzerland: 2018.

World Reference Base for Soil Resources (WRB) International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Volume 106 FAO; Rome, Italy: 2014. IUSS Working Group WRB; World Soil Resources Reports.

Peel M.C., Finlayson B.L., McMahon T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007;11:1633–1644. doi: 10.5194/hess-11-1633-2007. DOI

Statistica . Data Analysis Software System, Version 12. TIBCO Software INC; Palo Alto, CA, USA: 2017. [(accessed on 15 January 2019)]. Available online: http://statistica.io.

Steinitz B., Bilavendran A.D. Thiosulfate stimulates growth and alleviates silver and copper toxicity in tomato root cultures. Plant Cell Tissue Organ Cult. 2011;107:355–363. doi: 10.1007/s11240-011-9987-6. DOI

Monica R.C., Cremonini R. Nanoparticles and higher plants. Caryologia. 2009;62:161–165. doi: 10.1080/00087114.2004.10589681. DOI

Yan A., Chen Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019;20:1003. doi: 10.3390/ijms20051003. PubMed DOI PMC

Musante C., White J.C. Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. Environ. Toxicol. 2012;27:510–517. doi: 10.1002/tox.20667. PubMed DOI

Mazumdar H., Ahmed G.U. Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int. J. Chem. Tech. Res. 2011;3:1494–1500.

Dietz K.-J., Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16:582–589. doi: 10.1016/j.tplants.2011.08.003. PubMed DOI

Aslani F., Bagheri S., Muhd Julkapli N., Juraimi A.S., Hashemi F.S.G., Baghdadi A. Effects of engineered nanomaterials on plants growth: An overview. Sci. World J. 2014:641759. doi: 10.1155/2014/641759. PubMed DOI PMC

Tripathi D.K., Tripathi A., Singh S., Singh Y., Vishwakarma K., Yadav G., Sharma S., Singh V.K., Mishra R.K., Upadhyay R.G., et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017;8:7. doi: 10.3389/fmicb.2017.00007. PubMed DOI PMC

Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018;13:44. doi: 10.1186/s11671-018-2457-x. PubMed DOI PMC

Egbuna C., Parmar V.K., Jeevanandam J., Ezzat S.M., Patrick-Iwuanyanwu K.C., Adetunji C.O., Khan J., Onyeike E.N., Uche C.Z., Akram M., et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021;2021:9954443. doi: 10.1155/2021/9954443. PubMed DOI PMC

Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–8874. doi: 10.3390/molecules20058856. PubMed DOI PMC

Salomoni R., Léo P., Montemor A.F., Rinaldi B.G., Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 2017;10:115–121. doi: 10.2147/NSA.S133415. PubMed DOI PMC

Elumalai E.K., Vinothkumar P. Role of Silver Nanoparticle Against Plant Pathogens. Nano Biomed. Eng. 2013;5:90–93. doi: 10.5101/nbe.v5i2.p90-93. DOI

Khan M., Khan A.U., Bogdanchikova N., Garibo D. Antibacterial and Antifungal Studies of Biosynthesized Silver Nanoparticles against Plant Parasitic Nematode Meloidogyne incognita, Plant Pathogens Ralstonia solanacearum and Fusarium oxysporum. Molecules. 2021;26:2462. doi: 10.3390/molecules26092462. PubMed DOI PMC

Wolny-Kładka K., Malina D., Sobczak-Kupiec A., Wzorek Z. Synthesis and physicochemical characteristics of the silver nanoparticles and evaluation of their toxicity to fungi of the species Fusarium culmorum isolated from winter wheat. Pol. J. Agron. 2013;15:69–74.

Kasprowicz M., Gorczyca A., Koziol M. The effect of Silver Nanoparticles on phytopathogenic spores of Fusarium culmorum. Can. J. Microbiol. 2010;56:247–253. doi: 10.1139/W10-012. PubMed DOI

Kim W.S., Jung J.H., Lamsal K., Kim Y.S., Min S.J., Lee Y.S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology. 2012;40:53–58. doi: 10.5941/MYCO.2012.40.1.053. PubMed DOI PMC

Bystrzejewska-Piotrowska G., Golimowski J., Urban P.L. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag. 2009;29:2587–2595. doi: 10.1016/j.wasman.2009.04.001. PubMed DOI

Sharma V.K., Siskova K.M., Zboril R., Gardea-Torresdey J.L. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci. 2014;204:15–34. doi: 10.1016/j.cis.2013.12.002. PubMed DOI

Chichiriccó G., Poma A. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials. 2015;5:851–873. doi: 10.3390/nano5020851. PubMed DOI PMC

Da Costa M.V.J., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54:110–119. doi: 10.1007/s11099-015-0167-5. DOI

Jiang H.S., Yin L.Y., Ren N.N., Zhao S.T., Li Z., Zhi Y., Shao H., Li W., Gontero B. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology. 2017;11:157–167. doi: 10.1080/17435390.2017.1278802. PubMed DOI

Li M., Ahammed G.J., Li C., Bao X., Yu J., Huang C., Yin H., Zhou J. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front. Plant Sci. 2016;7:615. doi: 10.3389/fpls.2016.00615. PubMed DOI PMC

Saha N., Gupta S.D. A Glimpse on Silver Nanoparticles Genotoxicity in Higher Plants Global. Nanomed. J. 2017;2:1–2.

Kong I.C., Ko K.S., Koh D.C. Evaluation of the Effects of Particle Sizes of Silver Nanoparticles on Various Biological Systems. Int. J. Mol. Sci. 2020;21:8465. doi: 10.3390/ijms21228465. PubMed DOI PMC

Szőllősi R., Molnár Á., Kondak S., Kolbert Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants. 2020;9:1745. doi: 10.3390/plants9121745. PubMed DOI PMC

Poschenrieder C., Tolrà R., Barceló J. Can metals defend plants against biotic stress? Trends Plant Sci. 2006;11:288–295. doi: 10.1016/j.tplants.2006.04.007. PubMed DOI

Hillegass J.M., Shukla A., Lathrop S.A., MacPherson M.B., Fukagawa N.K., Mossman B.T. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:219–231. doi: 10.1002/wnan.54. PubMed DOI PMC

Nel A.E., Mädler L., Velegol D., Xia T., Hoek E.M.V., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009;8:543–557. doi: 10.1038/nmat2442. PubMed DOI

Chen M., Zhou S., Zhu Y., Sun Y., Zeng G., Yang C., Xu P., Yan M., Liu Z., Zhang W. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. Chemosphere. 2018;206:255–264. doi: 10.1016/j.chemosphere.2018.05.020. PubMed DOI

Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. The nanoparticle biomolecule corona: Lessons learned-Challenge accepted? Chem. Soc. Rev. 2015;44:6094–6121. doi: 10.1039/C5CS00217F. PubMed DOI

Almutairi Z.M., Alharbi A. Effect of silver nanoparticles on seed germination of crop plants. J. Adv. Agric. 2015;4:283–288. doi: 10.24297/jaa.v4i1.4295. DOI

Barrena R., Casals E., Colón J., Font X., Sánchez A., Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 2009;75:850–857. doi: 10.1016/j.chemosphere.2009.01.078. PubMed DOI

Prażak R., Święciło A., Krzepiłko A., Michałek S., Arczewska M. Impact of Ag Nanoparticles on Seed Germination and Seedling Growth of Green Beans in Normal and Chill Temperatures. Agriculture. 2020;10:312. doi: 10.3390/agriculture10080312. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Serendipita indica-A Review from Agricultural Point of View

. 2022 Dec 07 ; 11 (24) : . [epub] 20221207

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...