Silver Nanoparticles (AgNPs) in Urea Solution in Laboratory Tests and Field Experiments with Crops and Vegetables
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35160816
PubMed Central
PMC8837176
DOI
10.3390/ma15030870
PII: ma15030870
Knihovny.cz E-zdroje
- Klíčová slova
- nanomaterials, nanosilver, nanotechnology, plant growth, seed germination, yields,
- Publikační typ
- časopisecké články MeSH
Nanotechnology and nanomaterials, including silver nanoparticles (AgNPs), are increasingly important in modern science, economics, and agriculture. Their biological activity involves influencing plant health, physiological processes, growth, and yields, although they can also be toxic in the environment. A new fertiliser was made based on a urea solution with a relatively low content of AgNPs obtained by the reduction of silver nitrate V. Laboratory tests were used to assess the effect of a fertiliser solution containing 10 ppm AgNPs on the germination of agricultural plant seeds (barley, peas, oilseed rape) and vegetables (radish, cucumber, lettuce) and its foliar application on chlorophyll content, stomatal conductance, and seedling biomass. Field experiments were conducted to assess the effect that a foliar application of 15 ppm AgNPs in working liquid had on physiological plant parameters and yields of rape and cucumber. The AgNPs in the tested fertiliser reduced infestation of the germinating seeds by pathogens and positively affected the physiological processes, productivity, and yields of plants. Plant response depended on plant species and habitat conditions. Reduced pathogen infestation of seeds, higher germination energy, increased chlorophyll content and stomatal conductance, and higher seedling masses all occurred under the influence of AgNPs, mainly in oilseed rape and cucumber, and especially under thermal stress. The beneficial effect of AgNPs on the yield of these plants occurred in years of unfavourable weather conditions. The positive agricultural test results, especially under stress conditions, indicate that fertiliser produced with AgNPs as an ingredient may reduce the use of pesticides and highly concentrated mineral fertilisers. Such a fertiliser is fully in line with the idea of sustainable agriculture. However, research on the effects that AgNPs and fertiliser have on the environment and humans should continue.
Faculty of Engineering Artvin Coruh University Seyitler Campus Artvin 08000 Turkey
Reckitt Banckiser Production Sp z o o 05 100 Nowy Dwór Mazowiecki Poland
Research and Development Centre Agro Land Marek Różniak Śmielin 89 110 Sadki Poland
Zobrazit více v PubMed
Priestly B.G. Nanotechnology: A promising new technology—But how safe? Med. J. Aust. 2007;186:187–188. doi: 10.5694/j.1326-5377.2007.tb00859.x. PubMed DOI
Siddiqui M.H., Al-Whaibi M., Mohammad F. Nanotechnology and Plant Sciences Nanoparticles and Their Impact on Plants. Springer International Publishing; Cham, Switzerland: 2015.
Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. 2019;25:112. doi: 10.3390/molecules25010112. PubMed DOI PMC
Payal, Pandey P. Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents. Recent Pat. Nanotechnol. 2021;15 doi: 10.2174/1872210515666210120114504. PubMed DOI
Baig N., Kammakakam I., Falath W. Nanomaterials, a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. DOI
Kalkidan Mamo W., Fufa Abunna K., Yonas Tolosa R. A review on nanotechnology and its application in modern veterinary science. Int. J. Nanomater. Nanotechnol. Nanomed. 2021;7:26–31. doi: 10.17352/2455-3492.000041. DOI
Yaqoob A.A., Ibrahim M.N.M., Rafatullah M., Chua Y.S., Ahmad A., Umar K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials. 2020;13:2078. doi: 10.3390/ma13092078. PubMed DOI PMC
Soares S., Sousa J., Pais A., Vitorino C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front. Chem. 2018;6:360. doi: 10.3389/fchem.2018.00360. PubMed DOI PMC
Dahman Y. Nanotechnology and Functional Materials for Engineers. Elsevier; Amsterdam, The Netherlands: 2017.
Goldmann E., Górski M., Klemczak B. Recent Advancements in Carbon Nano-Infused Cementitious Composites. Materials. 2021;14:5176. doi: 10.3390/ma14185176. PubMed DOI PMC
Dutta M.M. Nanomaterials for Food and Agriculture. In: Bhat M., Wani I., Ashraf S., editors. Applications of Nanomaterials in Agriculture, Food Science, and Medicine. IGI Global; Hershey, PA, USA: 2021. pp. 75–97.
Manjunatha R.L., Naik D., Usharani K.V. Nanotechnology application in agriculture: A review. J. Pharmacogn. Phytochem. 2019;8:1073–1083.
Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 2017;15:15–22. doi: 10.1007/s10311-016-0600-4. DOI
Badawy A.A., Abdelfattah N.A.H., Salem S.S., Awad M.F., Fouda A. Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Wheat (Triticum aestivum L.) Plant. Biology. 2021;10:233. doi: 10.3390/biology10030233. PubMed DOI PMC
Salem S.S., Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021;199:344–370. doi: 10.1007/s12011-020-02138-3. PubMed DOI
León-Silva S., Arrieta-Cortes R., Fernández-Luqueño F., López-Valdez F. Agricultural Nanobiotechnology. Springer Science and Business Media LLC; Cham, Switzerland: 2018. Design and Production of Nanofertilizers; pp. 17–31.
Zhao L., Lu L., Wang A., Zhang H., Huang M., Wu H., Xing B., Wang Z., Ji R. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. J. Agric. Food Chem. 2020;68:1935–1947. doi: 10.1021/acs.jafc.9b06615. PubMed DOI
DeRosa M.C., Monreal C., Schnitzer M., Walsh R., Sultan Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010;5:91. doi: 10.1038/nnano.2010.2. PubMed DOI
Singh M.D., Chirag G., Prakash P.O., Mohan M.H., Prakasha G. Nano-Fertilizers is a New Way to Increase Nutrients Use Efficiency in Crop Production. Int. J. Agric. Sci. 2017;9:3831–3833.
Lin D., Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007;150:243–250. doi: 10.1016/j.envpol.2007.01.016. PubMed DOI
Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI
Sanzari I., Leone A., Ambrosone A. Nanotechnology in Plant Science: To Make a Long Story Short. Front. Bioeng. Biotechnol. 2019;7:120. doi: 10.3389/fbioe.2019.00120. PubMed DOI PMC
Lansdown A.B. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006;33:17–34. PubMed
Suresh A.K., Pelletier D.A., Wang W., Moon J.W., Gu B., Mortensen N.P., Allison D.P., Joy D.C., Phelps T.J., Doktycz M.J. Silver nanocrystallites: Biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ. Sci. Technol. 2010;44:5210–5215. doi: 10.1021/es903684r. PubMed DOI
Nowack B., Krug H.F., Height M. Reply to comments on B120 years of nanosilver history: Implications for policy makers. Environ. Sci. Technol. 2011;45:7593–7595. doi: 10.1021/es2017895. PubMed DOI
Kaur P., Thakur R., Choudhary A. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int. J. Sci. Technol. Res. 2012;1:83–86.
Vinković T., Novák O., Strnad M., Goessler W., Jurašin D.D., Paraiković N., Vrček I.V. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ. Res. 2017;156:10–18. doi: 10.1016/j.envres.2017.03.015. PubMed DOI
Alghuthaymi M.A., Almoammar H., Rai M., Said-Galiev E., Abd-Elsalam K.A. Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 2015;29:221–236. doi: 10.1080/13102818.2015.1008194. PubMed DOI PMC
Barros C.H.N., Fulaz S., Stanisic D., Tasic L. Biogenic Nanosilver against Multidrug-Resistant Bacteria (MDRB) Antibiotics. 2018;7:69. doi: 10.3390/antibiotics7030069. PubMed DOI PMC
Mehmood A. Brief overview of the application of silver nanoparticles to improve growth of crop plants. IET Nanobiotechnol. 2018;12:701–705. doi: 10.1049/iet-nbt.2017.0273. PubMed DOI PMC
Kudrinskiy A., Zherebin P., Gusev A., Shapoval O., Pyee J., Lisichkin G., Krutyakov Y. New Relevant Descriptor of Linear QNAR Models for Toxicity Assessment of Silver Nanoparticles. Nanomaterials. 2020;10:1459. doi: 10.3390/nano10081459. PubMed DOI PMC
Wagner A.J., Bleckmann C.A., Murdock R.C., Schrand A.M., Schlager J.J., Hussain S.M. Cellular Interaction of Different Forms of Aluminum Nanoparticles in Rat Alveolar Macrophages. J. Phys. Chem. B. 2007;111:7353–7359. doi: 10.1021/jp068938n. PubMed DOI
Hristozov D., Malsch I. Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health. Sustainability. 2009;1:1161–1194. doi: 10.3390/su1041161. DOI
Mittal D., Kaur G., Singh P., Yadav K., Ali S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Bioeng. Biotechnol. 2020;2:9954. doi: 10.3389/fnano.2020.579954. DOI
ISTA International Rules for Seed Testing. International Seed Testing Association; Bassersdorf, Switzerland: 2018.
World Reference Base for Soil Resources (WRB) International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Volume 106 FAO; Rome, Italy: 2014. IUSS Working Group WRB; World Soil Resources Reports.
Peel M.C., Finlayson B.L., McMahon T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007;11:1633–1644. doi: 10.5194/hess-11-1633-2007. DOI
Statistica . Data Analysis Software System, Version 12. TIBCO Software INC; Palo Alto, CA, USA: 2017. [(accessed on 15 January 2019)]. Available online: http://statistica.io.
Steinitz B., Bilavendran A.D. Thiosulfate stimulates growth and alleviates silver and copper toxicity in tomato root cultures. Plant Cell Tissue Organ Cult. 2011;107:355–363. doi: 10.1007/s11240-011-9987-6. DOI
Monica R.C., Cremonini R. Nanoparticles and higher plants. Caryologia. 2009;62:161–165. doi: 10.1080/00087114.2004.10589681. DOI
Yan A., Chen Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019;20:1003. doi: 10.3390/ijms20051003. PubMed DOI PMC
Musante C., White J.C. Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. Environ. Toxicol. 2012;27:510–517. doi: 10.1002/tox.20667. PubMed DOI
Mazumdar H., Ahmed G.U. Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int. J. Chem. Tech. Res. 2011;3:1494–1500.
Dietz K.-J., Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16:582–589. doi: 10.1016/j.tplants.2011.08.003. PubMed DOI
Aslani F., Bagheri S., Muhd Julkapli N., Juraimi A.S., Hashemi F.S.G., Baghdadi A. Effects of engineered nanomaterials on plants growth: An overview. Sci. World J. 2014:641759. doi: 10.1155/2014/641759. PubMed DOI PMC
Tripathi D.K., Tripathi A., Singh S., Singh Y., Vishwakarma K., Yadav G., Sharma S., Singh V.K., Mishra R.K., Upadhyay R.G., et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017;8:7. doi: 10.3389/fmicb.2017.00007. PubMed DOI PMC
Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018;13:44. doi: 10.1186/s11671-018-2457-x. PubMed DOI PMC
Egbuna C., Parmar V.K., Jeevanandam J., Ezzat S.M., Patrick-Iwuanyanwu K.C., Adetunji C.O., Khan J., Onyeike E.N., Uche C.Z., Akram M., et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021;2021:9954443. doi: 10.1155/2021/9954443. PubMed DOI PMC
Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–8874. doi: 10.3390/molecules20058856. PubMed DOI PMC
Salomoni R., Léo P., Montemor A.F., Rinaldi B.G., Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 2017;10:115–121. doi: 10.2147/NSA.S133415. PubMed DOI PMC
Elumalai E.K., Vinothkumar P. Role of Silver Nanoparticle Against Plant Pathogens. Nano Biomed. Eng. 2013;5:90–93. doi: 10.5101/nbe.v5i2.p90-93. DOI
Khan M., Khan A.U., Bogdanchikova N., Garibo D. Antibacterial and Antifungal Studies of Biosynthesized Silver Nanoparticles against Plant Parasitic Nematode Meloidogyne incognita, Plant Pathogens Ralstonia solanacearum and Fusarium oxysporum. Molecules. 2021;26:2462. doi: 10.3390/molecules26092462. PubMed DOI PMC
Wolny-Kładka K., Malina D., Sobczak-Kupiec A., Wzorek Z. Synthesis and physicochemical characteristics of the silver nanoparticles and evaluation of their toxicity to fungi of the species Fusarium culmorum isolated from winter wheat. Pol. J. Agron. 2013;15:69–74.
Kasprowicz M., Gorczyca A., Koziol M. The effect of Silver Nanoparticles on phytopathogenic spores of Fusarium culmorum. Can. J. Microbiol. 2010;56:247–253. doi: 10.1139/W10-012. PubMed DOI
Kim W.S., Jung J.H., Lamsal K., Kim Y.S., Min S.J., Lee Y.S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology. 2012;40:53–58. doi: 10.5941/MYCO.2012.40.1.053. PubMed DOI PMC
Bystrzejewska-Piotrowska G., Golimowski J., Urban P.L. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag. 2009;29:2587–2595. doi: 10.1016/j.wasman.2009.04.001. PubMed DOI
Sharma V.K., Siskova K.M., Zboril R., Gardea-Torresdey J.L. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci. 2014;204:15–34. doi: 10.1016/j.cis.2013.12.002. PubMed DOI
Chichiriccó G., Poma A. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials. 2015;5:851–873. doi: 10.3390/nano5020851. PubMed DOI PMC
Da Costa M.V.J., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54:110–119. doi: 10.1007/s11099-015-0167-5. DOI
Jiang H.S., Yin L.Y., Ren N.N., Zhao S.T., Li Z., Zhi Y., Shao H., Li W., Gontero B. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology. 2017;11:157–167. doi: 10.1080/17435390.2017.1278802. PubMed DOI
Li M., Ahammed G.J., Li C., Bao X., Yu J., Huang C., Yin H., Zhou J. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front. Plant Sci. 2016;7:615. doi: 10.3389/fpls.2016.00615. PubMed DOI PMC
Saha N., Gupta S.D. A Glimpse on Silver Nanoparticles Genotoxicity in Higher Plants Global. Nanomed. J. 2017;2:1–2.
Kong I.C., Ko K.S., Koh D.C. Evaluation of the Effects of Particle Sizes of Silver Nanoparticles on Various Biological Systems. Int. J. Mol. Sci. 2020;21:8465. doi: 10.3390/ijms21228465. PubMed DOI PMC
Szőllősi R., Molnár Á., Kondak S., Kolbert Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants. 2020;9:1745. doi: 10.3390/plants9121745. PubMed DOI PMC
Poschenrieder C., Tolrà R., Barceló J. Can metals defend plants against biotic stress? Trends Plant Sci. 2006;11:288–295. doi: 10.1016/j.tplants.2006.04.007. PubMed DOI
Hillegass J.M., Shukla A., Lathrop S.A., MacPherson M.B., Fukagawa N.K., Mossman B.T. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:219–231. doi: 10.1002/wnan.54. PubMed DOI PMC
Nel A.E., Mädler L., Velegol D., Xia T., Hoek E.M.V., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009;8:543–557. doi: 10.1038/nmat2442. PubMed DOI
Chen M., Zhou S., Zhu Y., Sun Y., Zeng G., Yang C., Xu P., Yan M., Liu Z., Zhang W. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. Chemosphere. 2018;206:255–264. doi: 10.1016/j.chemosphere.2018.05.020. PubMed DOI
Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. The nanoparticle biomolecule corona: Lessons learned-Challenge accepted? Chem. Soc. Rev. 2015;44:6094–6121. doi: 10.1039/C5CS00217F. PubMed DOI
Almutairi Z.M., Alharbi A. Effect of silver nanoparticles on seed germination of crop plants. J. Adv. Agric. 2015;4:283–288. doi: 10.24297/jaa.v4i1.4295. DOI
Barrena R., Casals E., Colón J., Font X., Sánchez A., Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 2009;75:850–857. doi: 10.1016/j.chemosphere.2009.01.078. PubMed DOI
Prażak R., Święciło A., Krzepiłko A., Michałek S., Arczewska M. Impact of Ag Nanoparticles on Seed Germination and Seedling Growth of Green Beans in Normal and Chill Temperatures. Agriculture. 2020;10:312. doi: 10.3390/agriculture10080312. DOI
Serendipita indica-A Review from Agricultural Point of View