Serendipita indica-A Review from Agricultural Point of View

. 2022 Dec 07 ; 11 (24) : . [epub] 20221207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36559533

Grantová podpora
IGA-ZF/2021-SI1004 Mendel university in Brno
OP VVV CZ.02.1.01/0.0/0.0/16_017/0002334 EU and Ministry of education of the Czech Republic.

Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.

Zobrazit více v PubMed

Jacoby R., Peukert M., Succurro A., Koprivova A., Kopriva S. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Front. Plant Sci. 2017;8:1617. doi: 10.3389/fpls.2017.01617. PubMed DOI PMC

Koskey G., Mburu S.W., Awino R., Njeru E.M., Maingi J.M. Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Fron. Sustain. Food Syst. 2021;5:606308. doi: 10.3389/fsufs.2021.606308. DOI

Saleem S., Bytešníková Z., Richtera L., Pokluda R. The Effects of Serendipita indica and Guanidine-Modified Nanomaterial on Growth and Development of Cabbage Seedlings and Black Spot Infestation. Agriculture. 2021;11:1295. doi: 10.3390/agriculture11121295. DOI

Garg M., Sharma N., Sharma S., Kapoor P., Kumar A., Chunduri V., Arora P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018;5:12. doi: 10.3389/fnut.2018.00012. PubMed DOI PMC

Meena V.S., Meena S.K., Verma J.P., Kumar A., Aeron A., Mishra P.K., Bisht J.K., Pattanayak A., Naveed M., Dotaniya M.L. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol. Eng. 2017;107:8–32. doi: 10.1016/j.ecoleng.2017.06.058. DOI

Bingzhu Y., Yanbin W., Xin Z., Ruoqing Z., Jinzhong W., Zhang C., Rahman K., Qin L., Han T., Zheng C. Beneficial effects of endophytic fungi from the Anoectochilus and Ludisia species on the growth and secondary metabolism of Anoectochilus Roxburghii. ACS Omega. 2020;5:3487–3497. doi: 10.1021/acsomega.9b03789. PubMed DOI PMC

Yang L., Zou Y.N., Tian Z.H., Wu Q.S., Kuča K. Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci. Hortic. 2021;277:109815. doi: 10.1016/j.scienta.2020.109815. DOI

Verma S., Varma A., Rexer K.H., Hassel A., Kost G., Sarbhoy A., Bisen P., Bütehorn B., Franken P. Piriformospora indica, gen. et sp. nov., a new root-colonising fungus. Mycologia. 1998;90:896–903. doi: 10.1080/00275514.1998.12026983. DOI

Jha Y., Yadav A.N. Industrially Important Fungi for Sustainable Development. Springer; Cham, Switzerland: 2021. Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors; pp. 363–392. DOI

Pham G.H., Kumari R., Singh A., Malla R., Prasad R., Sachdev M., Kaldorf M., Buscot F., OelmŘller R., Hampp R., et al. Plant Surface Microbiology. Springer; Berlin/Heidelberg, Germany: 2008. Axenic culture of symbiotic fungus Piriformospora indica; pp. 593–613. DOI

Attri M.K., Varma A. Comparative Study of Growth of Piriformospora indica by using different Sources of Jaggery. J. Pure Appl. Microbiol. 2018;12:933–942. doi: 10.22207/JPAM.12.2.56. DOI

Qiang X., Weiss M., Kogel K.H., Schafer P. Piriformospora indica—A mutualistic basidiomycete with an exceptionally large plant host range. Mol. Plant. Pathol. 2011;13:508–518. doi: 10.1111/j.1364-3703.2011.00764.x. PubMed DOI PMC

Ntana F., Bhat W.W., Johnson S.R., Jørgensen H.J., Collinge D.B., Jensen B., Hamberger B. A sesquiterpene synthase from the endophytic fungus Serendipita indica catalyzes formation of viridiflorol. Biomolecules. 2021;11:898. doi: 10.3390/biom11060898. PubMed DOI PMC

Gill S.S., Gill R., Trivedi D.K., Anjum N.A., Sharma K.K., Ansari M.W., Tuteja N. Piriformospora indica: Potential and significance in plant stress tolerance. Front. Microbiol. 2016;7:332. doi: 10.3389/fmicb.2016.00332. PubMed DOI PMC

Bleša D. Diploma Thesis. Masaryk University; Brno, Czech Republic: 2018. Orchideoid Mycorrhizal Fungi as Endophytes.

Deshmukh S., Hückelhoven R., Schäfer P., Imani J., Sharma M., Weiss M., Kogel K.H. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc. Natl. Acad. Sci. USA. 2006;103:18450–18457. doi: 10.1073/pnas.0605697103. PubMed DOI PMC

Mensah R.A., Li D., Liu F., Tian N., Sun X., Hao X., Cheng C. Versatile Piriformospora indica and its potential applications in horticultural crops. Hortic. Plant J. 2020;6:111–121. doi: 10.1016/j.hpj.2020.01.002. DOI

Abin N., Rokni N., Shafeinia A.R., Borhan M.H., Huyghe C. Quantification of endophyte Serendipita indica in Brassica napus roots by qPCR. Crop. Pasture Sci. 2021;72:985–993. doi: 10.1071/CP21265. DOI

Rokni N., Alizadeh H.S., Bazgir E., Darvishnia M., Mirzaei-Najafgholi H. The tripartite consortium of Serendipita indica, Trichoderma simmonsii, and bell pepper (Capsicum annum) Biol. Control. 2021;158:104608. doi: 10.1016/j.biocontrol.2021.104608. DOI

Vadassery J., Ranf S., Drzewiecki C., Mithöfer A., Mazars C., Scheel D., Lee J., Oelmüller R. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J. 2009;59:193–206. doi: 10.1111/j.1365-313X.2009.03867.x. PubMed DOI

Nivedita, Verma P.K., Upadhyaya K.C. Lectin Protein Kinase Is Induced in Plant Roots in Response to the Endophytic Fungus, Piriformospora indica. Plant Mol. Biol. Rep. 2017;35:323–332. doi: 10.1007/s11105-017-1024-4. DOI

Camehl I., Sherameti I., Seebald E., Johnson J.M., Oelmüller R. Piriformospora Indica. Springer; Berlin/Heidelberg, Germany: 2013. Role of defence compounds in the beneficial interaction between Arabidopsis thaliana and Piriformospora indica; pp. 239–250. DOI

Unnikumar K.R., Sree K.S., Varma A. Piriformospora indica: A versatile root endophytic symbiont. Symbiosis. 2013;60:107–113. doi: 10.1007/s13199-013-0246-y. DOI

Singhal U., Prasad R., Varma A. Piriformospora indica (Serendipita indica): The Novel Symbiont. In: Varma A., Prasad R., Tuteja N., editors. Mycorrhiza—Function, Diversity, State of the Art. Springer; Cham, Switzerland: 2017. pp. 349–364. DOI

Su Z.Z., Wang T., Shrivastava N., Chen Y.Y., Liu X., Sun C., Yin. Y., Gao Q.K., Lou B.G. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiol. Res. 2017;199:29–39. doi: 10.1016/j.micres.2017.02.006. PubMed DOI

Hosseini F., Mosaddeghi M.R., Dexter A.R., Sepehri M. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses. Planta. 2018;247:1229–1245. doi: 10.1007/s00425-018-2861-6. PubMed DOI

Liu B., Jing D., Liu F., Ma H., Liu X., Peng L. Serendipita indica alleviates drought stress responses in walnut (Juglans regia L.) seedlings by stimulating osmotic adjustment and antioxidant defence system. Appl. Microbiol. Biotechnol. 2021;105:8951–8968. doi: 10.1007/s00253-021-11653-9. PubMed DOI

Roylawar P., Khandagale K., Randive P., Shinde B., Murumkar C., Ade A., Singh M., Gawande S., Morelli M. Piriformospora indica Primes Onion Response against Stemphylium Leaf Blight Disease. Pathogens. 2021;10:1085. doi: 10.3390/pathogens10091085. PubMed DOI PMC

Upadhyaya C.P., Gururani M.A., Prasad R., Verma A. A Cell Wall Extract from Piriformospora indica Promotes Tuberization in Potato (Solanum tuberosum L.) Via Enhanced Expression of Ca+2 Signaling Pathway and Lipoxygenase Gene. Appl. Biochem. Biotechnol. 2013;170:743–755. doi: 10.1007/s12010-013-0231-1. PubMed DOI

Bagde U.S., Prasad R., Varma A. Impact of culture filtrate of Piriformospora indica on biomass and biosynthesis of active ingredient aristolochic acid in Aristolochia Elegans Mart. Int. J. Biol. 2014;6:29. doi: 10.5539/ijb.v6n1p29. DOI

Oelmüller R., Sherameti I., Tripathi S., Varma A. Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis. 2009;49:1–17. doi: 10.1007/s13199-009-0009-y. DOI

Bagde U.S., Prasad R., Varma A. Mass cultivation of Piriformospora indica in new brunswick fermenter and its formulation as biofertilizer. Asian J. Microbiol. Biotechnol. Environ. Sci. 2010;12:911–916.

Shrivastava S., Varma A. From Piriformospora indica to rootonic: A review. Afr. J. Microbiol. Res. 2014;8:2984–2992. doi: 10.5897/AJMR2014.6928. DOI

Barazani O., Benderoth M., Groten K., Kuhlemeier C., Baldwin I.T. Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia. 2005;146:234–243. doi: 10.1007/s00442-005-0193-2. PubMed DOI

Varma A., Bakshi M., Lou B., Hartmann A., Oelmüller R. Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus. Agric. Res. 2012;1:117–131. doi: 10.1007/s40003-012-0019-5. DOI

Jisha S., Sabu K.K., Manjula S. Multifunctional aspects of Piriformospora indica in plant endosymbiosis. Mycology. 2019;10:182. doi: 10.1080/21501203.2019.1600063. PubMed DOI PMC

Jogawat A., Saha S., Bakshi M., Dayaman V., Kumar M., Dua M., Varma A., Oelmüller R., Tuteja N., Johri A.K. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal. Behav. 2013;8:e26891. doi: 10.4161/psb.26891. PubMed DOI PMC

Liu B., Liu X., Liu F., Ma H., Ma B., Zhang W., Peng L. Growth improvement of Lolium multiflorum Lam. induced by seed inoculation with fungus suspension of Xerocomus badius and Serendipita indica. AMB Expr. 2019;9:145. doi: 10.1186/s13568-019-0865-7. PubMed DOI PMC

Sherameti I., Shahollari B., Venus Y., Altschmied L., Varma A., Oelmüller R. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J. Biol. Chem. 2005;280:26241–26247. doi: 10.1074/jbc.M500447200. PubMed DOI

Bagde U.S., Prasad R., Varma A. Influence of culture filtrate of Piriformospora indica on growth and yield of seed oil in Helianthus annus. Symbiosis. 2011;53:83–88. doi: 10.1007/s13199-011-0114-6. DOI

Li L., Zhu P., Wang X., Zhang Z. Phytoremediation effect of Medicago sativa colonised by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil. BMC Biotechnol. 2020;20:20. doi: 10.1186/s12896-020-00613-2. PubMed DOI PMC

Murphy B.R., Doohan F.M., Hodkinson T.R. Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis. 2014;62:29–39. doi: 10.1007/s13199-014-0268-0. DOI

Anith K.N., Aswini S., Varkey S., Radhakrishnan N.V., Nair D.S. Root colonization by the endophytic fungus Piriformospora indica improves growth, yield and piperine content in black pepper (Piper nigurm L.) Biocatal. Agric. Biotechnol. 2018;14:15–220. doi: 10.1016/j.bcab.2018.03.012. DOI

Tsai H.J., Shao K.H., Chan M.T., Cheng C.P., Yeh K.W., Oelmüller R., Wang S.J. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signal. Behav. 2020;15:1722447. doi: 10.1080/15592324.2020.1722447. PubMed DOI PMC

Dolatabadi H.K., Goltapeh E.M., Jaimand K., Rohani N., Varma A. Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J. Basic Microbiol. 2011;51:33–39. doi: 10.1002/jobm.201000214. PubMed DOI

Bakhshandeh E., Pirdashti H., Lendeh K.S., Zahra G., Khanghahi M.Y., Crecchio C. Effects of plant growth promoting microorganisms inoculums on mineral nutrition, growth and productivity of rice (Oryza sativa L.) J. Plant Nutr. 2020;43:1643–1660. doi: 10.1080/01904167.2020.1739297. DOI

Li Q., Kuo Y.W., Lin K.H., Huang W., Deng C., Yeh K.W., Chen S.P. Piriformospora indica colonization increases the growth, development, and herbivory resistance of sweet potato (Ipomoea batatas L.) Plant Cell Rep. 2021;40:339–350. doi: 10.1007/s00299-020-02636-7. PubMed DOI

Eliaspour S., Seyed, Sharifi R., Shirkhani A. Evaluation of interaction between Piriformospora indica, animal manure and NPK fertilizer on quantitative and qualitative yield and absorption of elements in sunflower. Food Sci. Nutr. 2020;8:2789–2797. doi: 10.1002/fsn3.1571. PubMed DOI PMC

Wang H., Zheng J., Ren X., Yu T., Varma A., Lou B., Zheng X. Effects of Piriformospora indica on the growth, fruit quality and interaction with Tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Plant Growth Regul. 2015;76:303–313. doi: 10.1007/s10725-015-0025-2. DOI

Azizi M., Fard E.M., Ghabooli M. Piriformospora indica affect drought tolerance by regulation of genes expression and some morphophysiological parameters in tomato (Solanum lycopersicum L.) Sci. Hortic. 2021;287:110260. doi: 10.1016/j.scienta.2021.110260. DOI

Hussin S., Khalifa W., Geissler N., Koyro H.W. Influence of the root endophyte Piriformospora indica on the plant water relations, gas exchange and growth of Chenopodium quinoa at limited water availability. J. Agron. Crop. Sci. 2016;203:373–384. doi: 10.1111/jac.12199. DOI

Baghaie A.H., Aghilizefreei A. Iron enriched green manure can increase wheat Fe concentration in Pb-polluted soil in the presence of Piriformospora indica (P. indica) Soil Sediment Contam. 2020;29:721–743. doi: 10.1080/15320383.2020.1771274. DOI

Ahmadvand G., Hajinia S. Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress. Crop Pasture Sci. 2018;69:594–605. doi: 10.1071/CP17364. DOI

Johnson J.M., Alex T., Oelmüller R. Piriformospora indica: The versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J. Trop. Agric. 2014;52:103–122.

Serfling A., Wirsel S.G., Lind V., Deising H.B. Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology. 2007;97:523–531. doi: 10.1094/PHYTO-97-4-0523. PubMed DOI

Khalid M., Rahman S.U., Huang D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture. Acta Biochim. Biophys. Sin. 2019;51:229–242. doi: 10.1093/abbs/gmz004. PubMed DOI

Swetha S., Padmavathi T. Study of acid phosphatase in solubilization of inorganic phosphates by Piriformospora indica. Pol. J. Microbiol. 2016;65:7. doi: 10.5604/17331331.1227666. PubMed DOI

Wu M., Wei Q., Xu L., Li H., Oelmüller R., Zhang W. Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil. 2018;432:333–344. doi: 10.1007/s11104-018-3795-2. DOI

Das J., Ramesh K.V., Maithri U., Mutangana D., Suresh C.K. Response of aerobic rice to Piriformospora indica. [(accessed on 10 February 2022)];Indian J. Exp. Biol. 2014 52:237–251. Available online: http://nopr.niscpr.res.in/handle/123456789/27348. PubMed

Baghaie A.H., Aghili F. Contribution of Piriformospora indica on improving the nutritional quality of greenhouse tomato and its resistance against cu toxicity after humic acid addition to soil. Environ. Sci. Pollut. Res. 2021;28:64572–64585. doi: 10.1007/s11356-021-15599-3. PubMed DOI

Moreira B.C., Mendes F.C., Mendes I.R., Paula T.A., Junior P.P., Salomão L.C., Stürmer S.L., Otoni W.C., Kasuya M.C. The interaction between arbuscular mycorrhizal fungi and Piriformospora indica improves the growth and nutrient uptake in micropropagation-derived pineapple plantlets. Sci. Hortic. 2015;14:183–192. doi: 10.1016/j.scienta.2015.09.032. DOI

Prasad D., Verma N., Bakshi M., Narayan O.P., Singh A.K., Dua M., Johri A.K. Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front. Microbiol. 2019;9:3231. doi: 10.3389/fmicb.2018.03231. PubMed DOI PMC

Narayan O.P., Verma N., Singh A.K., Oelmüller R., Kumar M., Prasad D., Kapoor R., Dua M., Johri A.K. Antioxidant enzymes in chickpea colonised by Piriformospora indica participate in defence against the pathogen Botrytis Cinerea. Sci. Rep. 2017;7:13553. doi: 10.1038/s41598-017-12944-w. PubMed DOI PMC

Padash A., Shahabivand S., Behtash F., Aghaee A. A practicable method for zinc enrichment in lettuce leaves by the endophyte fungus Piriformospora indica under increasing zinc supply. Sci. Hortic. 2016;213:367–372. doi: 10.1016/j.scienta.2016.10.040. DOI

Chen Y.Y., Lou B.G., Gao Q.K., Lin F.C. Preliminary study on mechanisms of drought resistance in Brassica napus L. conferred by Piriformospora indica. Biocatal. Agric. Biotechnol. 2013;21:72–281.

Gosal S.K., Sharma M., Gosal S.S., Chhibba I.M., Bhatnagar K., Varma A. Bio hardening with Piriformospora indica improves survival rate, growth, iron uptake and cane yield of micro propagated sugarcane. Int. Sugar J. 2011;113:382–388.

Abdelaziz E.M., Sabra M., Ali M. Colonising Lettuce (Lactuca sativa L.) with Rhizophagus irregularis and Piriformospora indica fungi enhance plant yield and quality in sand soil. Middle East J. Appl. Sci. 2018;8:1173–1180.

Sun C., Johnson J.M., Cai D., Sherameti I., Oelmüller R., Lou B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 2010;167:009–1017. doi: 10.1016/j.jplph.2010.02.013. PubMed DOI

Lakshmipriya P., Nath V.S., Veena S.S., Anith K.N., Sreekumar J., Jeeva M.L. Piriformospora indica, a cultivable endophyte for growth promotion and disease management in Taro (Colocasia esculenta (L.) J. Root Crops. 2016;42:107–114.

Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., Heier T., Hückelhoven R., Neumann C., von Wettstein D., et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA. 2005;102:13386–13391. doi: 10.1073/pnas.0504423102. PubMed DOI PMC

Arunkumar G.P., Shivaprakash M.K. Influence of novel endophytic fungus Piriformospora indica on growth and yield of finger millet (Eleusine coracana G.) in combination with N fixer and P solubilizer. Int. J. Curr. Microbiol. App. Sci. 2017;6:1037–1042. doi: 10.20546/ijcmas.2017.612.116. DOI

Tarte S.H., Kareppa B.M., Kharde A.V. Impact of Piriformospora indica on growth and yield parameters of groundnut (Arachis hypogea L.) Pharma innov. 2019;8:766–769.

Ray J.G., Valsalakumar N. Arbuscular mycorrhizal fungi and Piriformospora indica individually and in combination with rhizobium on green gram. J. Plant Nutr. 2010;33:285–298. doi: 10.1080/01904160903435409. DOI

Meena K.K., Mesapogu S., Kumar M., Yandigeri M.S., Singh G., Saxena A.K. Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol. Fertil. Soils. 2010;46:169–174. doi: 10.1007/s00374-009-0421-8. DOI

Bajaj R., Agarwal A., Rajpal K., Asthana S., Kumar R., Prasad R., Kharkwal A.C., Sherameti I., Oelmüller R., Varma A. Co-cultivation of Curcuma longa with Piriformospora indica enhances the yield and active ingredients. Am. J. Curr. Microbiol. 2014;2:6–17.

Dolatabadi H.K., Goltapeh E.M., Moieni A., Jaimand K., Sardrood B.P., Varma A. Effect of Piriformospora indica and Sebacina vermifera on plant growth and essential oil yield in Thymus vulgaris in vitro and in vivo experiments. Symbiosis. 2011;53:29–35. doi: 10.1007/s13199-010-0104-0. DOI

Prasad R., Kamal S., Sharma P.K., Oelmüller R., Varma A. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J. Basic Microbiol. 2013;53:1016–1024. doi: 10.1002/jobm.201200367. PubMed DOI

Sharma P., Kharkwal A.C., Abdin M.Z., Varma A. Piriformospora indica improves micropropagation, growth and phytochemical content of Aloe vera L. plants. Symbiosis. 2014;64:11–23. doi: 10.1007/s13199-014-0298-7. DOI

Arora M., Saxena P., Choudhary D.K., Abdin M.Z., Varma A. Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J. Microbiol. Biotechnol. 2016;32:19. doi: 10.1007/s11274-015-1972-5. PubMed DOI

Rahman S.U., Khalid M., Kayani S.I., Tang K. The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition. Ecotoxicol. Environ. Saf. 2020;206:111202. doi: 10.1016/j.ecoenv.2020.111202. PubMed DOI PMC

Satheesan J., Narayanan A.K., Sakunthala M. Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza. 2012;22:195–202. doi: 10.1007/s00572-011-0394-y. PubMed DOI

Das A., Kamal S., Shakil N.A., Sherameti I., Oelmüller R., Dua M., Tuteja N., Johri A.K., Varma A. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal. Behav. 2012;7:103–112. doi: 10.4161/psb.7.1.18472. PubMed DOI PMC

Kumar P., Chaturvedi R., Sundar D., Bisaria V.S. Piriformospora indica enhances the production of pentacyclic triterpenoids in Lantana camara L. suspension cultures Plant Cell Tissue Organ Cult. 2016;125:23–29. doi: 10.1007/s11240-015-0924-y. DOI

Sepehri M., Khatabi B. Combination of siderophore-producing bacteria and Piriformospora indica provides an efficient approach to improve cadmium tolerance in alfalfa. Microb. Ecol. 2020;202:717–730. doi: 10.1007/s00248-020-01629-z. PubMed DOI

Keramati S., Pirdashti H., Babaeizad V., Dehestani A. Essential oil composition of sweet basil (Ocimum basilicum L.) in symbiotic relationship with Piriformospora indica and paclobutrazol application under salt stress. Acta. Biol. Hung. 2016;67:412–423. doi: 10.1556/018.67.2016.4.7. PubMed DOI

Chen W., Lin F., Lin K.H., Chen C., Xia C., Liao Q., Chen S.P., Kuo Y.W. Growth promotion and salt-tolerance improvement of Gerbera jamesonii by root colonization of Piriformospora indica. Plant Growth Regul. 2021;41:1219–1228. doi: 10.1007/s00344-021-10385-4. DOI

Lin H.F., Xiong J., Zhou H.M., Chen C.M., Lin F.Z., Xu X.M., Oelmüller R., Xu W.F., Yeh K.W. Growth promotion and disease resistance induced in Anthurium colonised by the beneficial root endophyte Piriformospora indica. BMC Plant Biol. 2019;19:40. doi: 10.1186/s12870-019-1649-6. PubMed DOI PMC

Madaan G., Gosal S.K., Gosal S.S., Saroa G.S., Gill M.I. Effect of microbial inoculants on the growth and yield of micropropagated banana (Musa indica) cv. Grand. Naine. J. Hortic. Sci. Biotechnol. 2013;88:643–649. doi: 10.1080/14620316.2013.11513019. DOI

Yan C., Rizwan H.M., Liang D., Reichelt M., Mithöfer A., Scholz S.S., Oelmüller R., Chen F. The effect of the root colonising Piriformospora indica on passion fruit (Passiflora edulis) development: Initial defence shifts to fitness benefits and higher fruit quality. Food Chem. 2021;359:129671. doi: 10.1016/j.foodchem.2021.129671. PubMed DOI

Hassani D., Khalid M., Huang D., Zhang Y.D. Morphophysiological and molecular evidence supporting the augmentative role of Piriformospora indica in mitigation of salinity in Cucumis melo L. Acta Biochim. Biophys. Sin. 2019;51:301–312. doi: 10.1093/abbs/gmz007. PubMed DOI

Shekhawat P.K., Jangir P., Bishnoi A., Roy S., Ram H., Soni P. Serendipita indica: Harnessing its versatile potential for food and nutritional security. Physiol. Mol. Plant Pathol. 2021;116:101708. doi: 10.1016/j.pmpp.2021.101708. DOI

Mendoza-Mendoza A., Zaid R., Lawry R., Hermosa R., Monte E., Horwitz B.A., Mukherjee P.K. Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. Fungal Biol. Rev. 2018;32:62–85. doi: 10.1016/j.fbr.2017.12.001. DOI

Mishra D., Kumar A., Tripathi S., Chitara M.K., Chaturvedi P. Biostimulants for Crops from Seed Germination to Plant Development. Academic Press; Cambridge, MA, USA: 2021. Endophytic fungi as biostimulants: An efficient tool for plant growth promotion under biotic and abiotic stress conditions; pp. 365–391. DOI

Newman M.A., Sundelin T., Nielsen J.T., Erbs G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 2013;4:139. doi: 10.3389/fpls.2013.00139. PubMed DOI PMC

Liu T., Liu Z., Song C., Hu Y., Han Z., She J., Fan F., Wang J., Jin C., Chang J., et al. Chitin-induced dimerization activates a plant immune receptor. Science. 2012;336:1160–1164. doi: 10.1126/science.1218867. PubMed DOI

Sanchez-Vallet A., Mesters J.R., Thomma B.P. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol. Rev. 2015;39:171–183. doi: 10.1093/femsre/fuu003. PubMed DOI

Wawra S., Fesel P., Widmer H., Timm M., Seibel J., Leson L., Kesseler L., Nostadt R., Hilbert M., Langen G., et al. The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nat. Commun. 2016;7:13188. doi: 10.1038/ncomms13188. PubMed DOI PMC

Vandenkoornhuyse P., Quaiser A., Duhamel M., Le Van A., Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206:1196–1206. doi: 10.1111/nph.13312. PubMed DOI

Nassimi Z., Taheri P. Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol. Sci. Technol. 2017;27:252–267. doi: 10.1080/09583157.2016.1277690. DOI

Hua M.D.S., Senthil Kumar R., Shyur L.F., Cheng Y.B., Tian Z., Oelmüller R., Yeh K.W. Metabolomic compounds identified in Piriformospora indica-colonised Chinese cabbage roots delineate symbiotic functions of the interaction. Sci. Rep. 2017;7:9291. doi: 10.1038/s41598-017-08715-2. PubMed DOI PMC

Xu L., Wu C., Oelmueller R., Zhang W. Role of phytohormones in Piriformospora indica-induced growth promotion and stress tolerance in plants: More questions than answers. Front. Microbiol. 2018;9:1646. doi: 10.3389/fmicb.2018.01646. PubMed DOI PMC

Lee Y.C., Johnson J.M., Chien C.T., Sun C., Cai D., Lou B., Oelmüller R., Yeh K.W. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol. Plant Microbe Interact. 2011;24:421–431. doi: 10.1094/MPMI-05-10-0110. PubMed DOI

Dong S., Tian Z., Chen P.J., Senthil Kumar R., Shen C.H., Cai D., Oelmüllar R., Yeh K.W. The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J. Exp. Bot. 2013;64:4529–4540. doi: 10.1093/jxb/ert265. PubMed DOI PMC

Kim D., Abdelaziz M.E., Ntui V.O., Guo X., Al-Babili S. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis. Biochem. Biophys. Res. Commun. 2017;490:1162–1167. doi: 10.1016/j.bbrc.2017.06.169. PubMed DOI

Pan R., Xu L., Wei Q., Wu C., Tang W., Oelmüller R., Zhang W. Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways. PLoS ONE. 2017;12:e0189791. doi: 10.1371/journal.pone.0189791. PubMed DOI PMC

Varma A., Sherameti I., Tripathi S., Prasad R., Das A., Sharma M., Bakshi M., Johnson J.M., Bhardwaj S., Arora M., et al. The symbiotic fungus Piriformospora indica: Review. Mycota Fungal Assoc. 2012;9:231–254. doi: 10.1007/978-3-642-30826-0-13. DOI

Zhang W.Y., Wang J., Xu L., Wang A.A., Huang L., Du H.W., Qiu L.J., Oelmüller R. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal. Behav. 2018;13:e1414121. doi: 10.1080/15592324.2017.1414121. PubMed DOI PMC

Ghorbani A., Tafteh M., Roudbari N., Pishkar L., Zhang W., Wu C. Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilising arsenic in roots and improving iron translocation to shoots. Ecotoxicol. Environ. Saf. 2021;209:111793. doi: 10.1016/j.ecoenv.2020.111793. PubMed DOI

Opitz M.W., Daneshkhah R., Lorenz C., Ludwig R., Steinkellner S., Wieczorek K. Serendipita indica changes host sugar and defence status in Arabidopsis thaliana: Cooperation or exploitation? Planta. 2021;253:74. doi: 10.1007/s00425-021-03587-3. PubMed DOI PMC

Gull A., Lone A.A., Wani N.U.I. Abiotic and Biotic Stress in Plants. IntechOpen; London, UK: 2019. Biotic and abiotic stresses in plants; pp. 1–19. DOI

Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments: A review. Plant Signal. Behave. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC

Fakhro A., Andrade-Linares D.R., von Bargen S., Bandte M., Büttner C., Grosch R., Schwarz D., Franken P. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 2010;20:191–200. doi: 10.1007/s00572-009-0279-5. PubMed DOI

Del Barrio-Duque A., Ley J., Samad A., Antonielli L., Sessitsch A., Compant S. Beneficial endophytic bacteria-Serendipita indica interaction for crop enhancement and resistance to phytopathogens. Front. Microbiol. 2019;10:2888. doi: 10.3389/fmicb.2019.02888. PubMed DOI PMC

Deshmukh S.D., Kogel K.H. Piriformospora indica protects barley from root rot caused by Fusarium Graminearum. J. Plant Dis. Prot. 2007;114:263–268. doi: 10.1007/BF03356227. DOI

Roylawar P., Panda S., Kamble A. Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight. Physiol. Mol. Plant. Pathol. 2015;91:88–95. doi: 10.1016/j.pmpp.2015.06.004. DOI

Panda S., Busatto N., Hussain K., Kamble A. Piriformospora indica-primed transcriptional reprogramming induces defence response against early blight in tomato. Sci. Hortic. 2019;255:209–219. doi: 10.1016/j.scienta.2019.05.031. DOI

Khalid M., Hui N., Rahman S.U., Hayat K., Huang D. Suppression of clubroot (Plasmodiophora brassicae) development in Brassica campestris sp. chinensis L. via exogenous inoculation of Piriformospora indica. J. Radiat. Res. Appl. Sci. 2020;13:180–190. doi: 10.1080/16878507.2020.1719337. DOI

Bajaj R., Hu W., Huang Y., Chen S., Prasad R., Varma A., Bushley K.E. The beneficial root endophyte Piriformospora indica reduces egg density of the soybean cyst nematode. Biol. Control. 2015;90:193–199. doi: 10.1016/j.biocontrol.2015.05.021. DOI

Trzewik A., Orlikowska T., Kowalczyk W., Maciorowski R., Marasek-Ciołakowska A., Klocke E. Stimulation of ex vitro growth of Rhododendron hybrids ‘Nova Zembla’ and ‘Alfred’ by inoculation of roots with Serendipita indica. Hortic. Sci. 2020;47:194–202. doi: 10.17221/7/2020-HORTSCI. DOI

Trzewik A., Marasek-Ciolakowska A., Orlikowska T. Protection of Highbush Blueberry Plants against Phytophthora cinnamomi Using Serendipita indica. Agron. J. 2020;10:1598. doi: 10.3390/agronomy10101598. DOI

Ansari M.W., Trivedi D.K., Sahoo R.K., Gill S.S., Tuteja N. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol. Biochem. 2013;70:403–410. doi: 10.1016/j.plaphy.2013.06.005. PubMed DOI

Li L., Guo N., Feng Y., Duan M., Li C. Effect of Piriformospora indica-Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat. Front. Plant Sci. 2022;13:836940. doi: 10.3389/fpls.2022.836940. PubMed DOI PMC

Stein E., Molitor A., Kogel K.H., Waller F. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 2008;49:1747–1751. doi: 10.1093/pcp/pcn147. PubMed DOI

Franken P. The plant strengthening root endophyte Piriformospora indica: Potential application and the biology behind. Appl. Microbiol. Biotechnol. 2012;96:1455–1464. doi: 10.1007/s00253-012-4506-1. PubMed DOI PMC

Zarea M.J., Hajinia S., Karimi N., Goltapeh E.M., Rejali F., Varma A. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol. Biochem. 2012;45:139–146. doi: 10.1016/j.soilbio.2011.11.006. DOI

Cheng C., Li D., Qi Q., Sun X., Anue M.R., David B.M., Zhang Y., Hao X., Zhang Z., Lai Z. The root endophytic fungus Serendipita indica improves resistance of banana to Fusarium oxysporum f. sp. cubense tropical race 4. Eur. J. Plant Pathol. 2020;156:87–100. doi: 10.1007/s10658-019-01863-3. DOI

Atri C., Akhatar J., Gupta M., Gupta N., Goyal A., Rana K., Kaur R., Mittal M., Sharma A., Singh M.P., et al. Molecular and genetic analysis of defensive responses of Brassica juncea–B. fruticulosa introgression lines to Sclerotinia infection. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-019-53444-3. PubMed DOI PMC

Poveda J., Hermosa R., Monte E., Nicolás C. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci. rep. 2019;9:11650. doi: 10.1038/s41598-019-48269-z. PubMed DOI PMC

Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC

Kumar M., Yadav V., Tuteja N., Johri A.K. Antioxidant enzyme activities in maize plants colonised with Piriformospora indica. Microbiology. 2009;155:780–790. doi: 10.1099/mic.0.019869-0. PubMed DOI

Abdelaziz M.E., Atia M.A., Abdelsattar M., Abdelaziz S.M., Ibrahim T.A., Abdeldaym E.A. Unravelling the Role of Piriformospora indica in combating water deficiency by modulating physiological performance and chlorophyll metabolism-related genes in Cucumis sativus. Horticulturae. 2021;7:399. doi: 10.3390/horticulturae7100399. DOI

Tyagi J., Chaudhary P., Mishra A., Khatwani M., Dey S., Varma A. Role of endophytes in abiotic stress tolerance: With special emphasis on Serendipita indica. Int. J. Environ. Res. 2022;16:62. doi: 10.1007/s41742-022-00439-0. DOI

Atia M.A., Abdeldaym E.A., Abdelsattar M., Ibrahim D.S., Saleh I., Abd Elwahab M., Osman G.H., Arif I.A., Abdelaziz M.E. Piriformospora indica promotes cucumber tolerance against root-knot nematode by modulating photosynthesis and innate responsive genes. Saudi J. Biol. Sci. 2020;27:279–287. doi: 10.1016/j.sjbs.2019.09.007. PubMed DOI PMC

Jangir P., Shekhawat P.K., Bishnoi A., Ram H., Soni P. Role of Serendipita indica in enhancing drought tolerance in crops. Physiol. Mol. Plant. Pathol. 2021;116:101691. doi: 10.1016/j.pmpp.2021.101691. DOI

Ghaffari M.R., Mirzaei M., Ghabooli M., Khatabi B., Wu Y., Zabet-Moghaddam M., Mohammadi-Nejad G., Haynes P.A., Hajirezaei M.R., Sepehri M., et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ. Ex. Bot. 2019;157:197–210. doi: 10.1016/j.envexpbot.2018.10.002. DOI

Tanha S.R., Ghasemnezhad A., Babaeizad V. A study on the effect of endophyte fungus, Piriformospora indica, on the yield and phytochemical changes of globe artichoke (Cynara scolymus L.) leaves under water stress. Int. J. Adv. Biol. Biomed. Res. 2014;2:1907–1921. doi: 10.33945/SAMI/IJABBR. DOI

Xu L., Wang A., Wang J., Wei Q., Zhang W. Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. Crop. J. 2017;5:251–258. doi: 10.1016/j.cj.2016.10.002. DOI

Zhang W.Y., Wang A.A., Hao R.C., Yang T. Endophytic fungus Piriformospora indica promotes growth and confers drought tolerance in sesame (Sesamum indicum L.) Chin. J. Oil Crop Sci. 2014;36:11. doi: 10.7505/j.issn.1007-9084.2014.01.011. DOI

Li D., Bodjrenou D.M., Zhang S., Wang B., Pan H., Yeh K.W., Lai Z., Cheng C. The endophytic fungus Piriformospora indica reprograms banana to cold resistance. Int. J. Mol. Sci. 2021;22:4973. doi: 10.3390/ijms22094973. PubMed DOI PMC

Jiang W., Pan R., Buitrago S., Wu C., Abdelaziz M.E., Oelmüller R., Zhang W. (Transcriptome analysis of Arabidopsis reveals freezing-tolerance related genes induced by root endophytic fungus Piriformospora indica. Physiol. Mol. Biol. Plants. 2021;27:189–201. doi: 10.1007/s12298-020-00922-y. PubMed DOI PMC

Li L., Li L., Wang X., Zhu P., Wu H., Qi S. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiol. Biochem. 2017;119:211–223. doi: 10.1016/j.plaphy.2017.08.029. PubMed DOI

Abdelaziz M.E., Kim D., Ali S., Fedoroff N.V., Al-Babili S. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci. 2017;263:107–115. doi: 10.1016/j.plantsci.2017.07.006. PubMed DOI

Singh M., Tiwari N. Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defence. Commun. Integr. Biol. 2021;114:136–150. doi: 10.1080/19420889.2021.1937839. PubMed DOI PMC

Jogawat A., Vadassery J., Verma N., Oelmüller R., Dua M., Nevo E., Johri A.K. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci. Rep. 2016;6:36765. doi: 10.1038/srep36765. PubMed DOI PMC

Ghaffari M.R., Ghabooli M., Khatabi B., Hajirezaei M.R., Schweizer P., Salekdeh G.H. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol. Biol. 2016;90:699–717. doi: 10.1007/s11103-016-0461-z. PubMed DOI

Khalid M., Hassani D., Liao J., Xiong X., Bilal M., Huang D. An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulating cation transporter genes, phytohormones, and antioxidants in Brassica campestris ssp. Chinensis. Environ. Exp. Bot. 2018;153:89–99. doi: 10.1016/j.envexpbot.2018.05.007. DOI

Ghorbani A., Omran V.O.G., Razavi S.M., Pirdashti H., Ranjbar M. Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status. Plant Cell Rep. 2019;38:1151–1163. doi: 10.1007/s00299-019-02434-w. PubMed DOI

Boorboori M.R., Zhang H.-Y. The Role of Serendipita indica (Piriformospora indica) in Improving Plant Resistance to Drought and Salinity Stresses. Biology. 2022;11:952. doi: 10.3390/biology11070952. PubMed DOI PMC

Shahabivand S., Parvaneh A., Aliloo A.A. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol. Environ. Saf. 2017;145:96–502. doi: 10.1016/j.ecoenv.2017.07.064. PubMed DOI

Shahabivand S., Maivan H.Z., Goltapeh E.M., Sharifi M., Aliloo A.A. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol. Biochem. 2012;60:53–58. doi: 10.1016/j.plaphy.2012.07.018. PubMed DOI

Baghaie A.H., Jabari A.G. Effect of nano Fe-oxide and endophytic fungus (P. indica) on petroleum hydrocarbons degradation in an arsenic contaminated soil under barley cultivation. J. Env. Health Sci. Eng. 2019;17:853–861. doi: 10.1007/s40201-019-00402-w. PubMed DOI PMC

Sabra M., Aboulnasr A., Franken P., Perreca E., Wright L.P., Camehl I. Beneficial root endophytic fungi increase growth and quality parameters of sweet basil in heavy metal contaminated soil. Front. Plant Sci. 2018;9:1726. doi: 10.3389/fpls.2018.01726. PubMed DOI PMC

Mohd S., Shukla J., Kushwaha A.S., Mandrah K., Shankar J., Arjaria N., Saxena P.N., Narayan R., Roy S.K., Kumar M. Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Front. Microbiol. 2017;8:754. doi: 10.3389/fmicb.2017.00754. PubMed DOI PMC

Hui F., Liu J., Gao Q., Lou B. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. J. Environ. Sci. 2015;1:184–191. doi: 10.1016/j.jes.2015.06.005. PubMed DOI

Swetha S., Padmavathi T. Mitigation of Drought Stress by Piriformospora indica in Solanum melongena L. cultivars. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020;90:585–593. doi: 10.1007/s40011-019-01128-3. DOI

Saddique M.A., Ali Z., Khan A.S., Rana I.A., Shamsi I.H. Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. Rice. 2018;11:34. doi: 10.1186/s12284-018-0226-1. PubMed DOI PMC

Ghabooli M., Khatabi B., Ahmadi F.S., Sepehri M., Mirzaei M., Amirkhani A., Jorrín-Novo J.V., Salekdeh G.H. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteom. 2013;94:289–301. doi: 10.1016/j.jprot.2013.09.017. PubMed DOI

Tyagi J., Varma A., Pudake R.N. Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur. J. Soil. Biol. 2017;1:1–10. doi: 10.1016/j.ejsobi.2017.05.007. DOI

Lanza M., Haro R., Conchillo L.B., Benito B. The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress: Fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity. Environ. Microbiol. 2019;21:3364–3378. doi: 10.1111/1462-2920.14619. PubMed DOI

Bagheri A.A., Saadatmand S., Niknam V., Nejadsatari T., Babaeizad V. Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. [(accessed on 10 February 2022)];Int. J. Adv. Biol. Biomed. Res. 2013 1:1337–1350. Available online: http://www.ijabbr.com/article_7908.html.

Baltruschat H., Fodor J., Harrach B.D., Niemczyk E., Barna B., Gullner G., Janeczko A., Kogel K.H., Schäfer P., Schwarczinger I., et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol. 2008;180:501–510. doi: 10.1111/j.1469-8137.2008.02583.x. PubMed DOI

David B.M., Sun X., Mensah R.A., Li D., Liu F., Tian N., Lai Z., Cheng C. Physiological and biochemical mechanism of Piriformospora indica induced high temperature resistance in banana. Chin. J. Appl. Environ. Biol. 2020;26:1466–1472. doi: 10.19675/j.cnki.1006-687x.2019.12032. DOI

Sagonda T., Adil M.F., Sehar S., Rasheed A., Joan H.I., Ouyang Y., Shamsi I.H. Physio-ultrastructural footprints and iTRAQ-based proteomic approach unravel the role of Piriformospora indica-colonization in counteracting cadmium toxicity in rice. Ecotoxicol. Environ. Saf. 2021;1:112390. doi: 10.1016/j.ecoenv.2021.112390. PubMed DOI

Wang X., Fan X., Wang W., Song F. Combined Effects of Inoculating Serendipita Indica on Soybean Growth and Soil Health Under Cd Stress. Res. Square Preprint. 2021;10:11. doi: 10.21203/rs.3.rs-463405/v1. DOI

Rajak J., Bawaskar M., Rathod D., Agarkar G., Nagaonkar D., Gade A., Rai M. Interaction of copper nanoparticles and an endophytic growth promoter Piriformospora indica with Cajanus Cajan. J. Sci. Food Agric. 2017;97:4562–4570. doi: 10.1002/jsfa.8324. PubMed DOI

Nagaonkar D., Shende S., Rai M. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol. Prog. 2015;31:57–565. doi: 10.1002/btpr.2040. PubMed DOI

Varma A., Uma K.M. Role of nanoparticles on plant growth with special emphasis on Piriformospora indica: A Review. In: Ghorbanpour M., Manika K., Varma A., editors. Nanoscience and Plant–Soil Systems. Springer; Cham, Switzerland: 2017. pp. 387–403. DOI

Rane M., Bawskar M., Rathod D., Nagaonkar D., Rai M. Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015;6:045014. doi: 10.1088/2043-6262/6/4/045014. DOI

Nongbet A., Mishra A.K., Mohanta Y.K., Mahanta S., Ray M.K., Khan M., Baek K.H., Chakrabartty I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. Plants. 2022;11:2587. doi: 10.3390/plants11192587. PubMed DOI PMC

Jaskulski D., Jaskulska I., Majewska J., Radziemska M., Bilgin A., Brtnicky M. Silver nanoparticles (AgNPs) in urea solution in laboratory tests and field experiments with crops and vegetables. Materials. 2022;15:870. doi: 10.3390/ma15030870. PubMed DOI PMC

Mahapatra D.M., Satapathy K.C., Panda B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci. Total Environ. 2022;803:149990. doi: 10.1016/j.scitotenv.2021.149990. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...