Dissolution
Dotaz
Zobrazit nápovědu
In vitro dissolution testing is commonly performed to ensure that oral solid dosage medicines are of high quality and will achieve their targeted in vivo performance. However, this testing is time and material consuming. Therefore, pharmaceutical companies have been developing predictive dissolution models (PDMs) for drug product release based on fast at- and/or on-line measurements, including real-time release testing of dissolution (RTRT-D). Recently, PDMs have seen acceptance by major regulatory bodies as release tests for the dissolution critical quality attribute. In this paper, several methodologies are described to develop and validate a fit-for-purpose model, then to implement it as a surrogate release test for dissolution. These approaches are further exemplified by real-life case studies, which demonstrate that PDMs for release are not only viable but more sustainable than in vitro dissolution testing and can significantly accelerate drug product release. The rise of continuous manufacturing within the pharmaceutical industry further favors the implementation of real-time release testing. Therefore, a steep uptake of PDMs for release is expected once this methodology is globally accepted. To that end, it is advantageous for global regulators and pharmaceutical innovators to coalesce around a harmonized set of expectations for development, validation, implementation, and lifecycle of PDMs as part of drug product release testing.
- MeSH
- aplikace orální MeSH
- farmaceutická chemie metody MeSH
- léčivé přípravky chemie aplikace a dávkování MeSH
- lidé MeSH
- příprava léků MeSH
- rozpustnost MeSH
- schvalování léčiv MeSH
- uvolňování léčiv * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Spinal cord injury (SCI) results in paralysis, driven partly by widespread glutamate-induced secondary excitotoxic neuronal cell death in and around the injury site. While there is no curative treatment, the standard of care often requires interventive decompression surgery and repair of the damaged dura mater close to the injury locus using dural substitutes. Such intervention provides an opportunity for early and local delivery of therapeutics directly to the injured cord via a drug-loaded synthetic dural substitute for localized pharmacological therapy. Riluzole, a glutamate-release inhibitor, has shown neuroprotective potential in patients with traumatic SCI, and therefore, this study aimed to develop an electrospun riluzole-loaded synthetic dural substitute patch suitable for the treatment of glutamate-induced injury in neurons. A glutamate-induced excitotoxicity was optimized in SH-SY5Y cells by exploring the effect of glutamate concentration and exposure duration. The most effective timing for administering riluzole was found to be at the onset of glutamate release as this helped to limit extended periods of glutamate-induced excitotoxic cell death. Riluzole-loaded patches were prepared by using blend electrospinning. Physicochemical characterization of the patches showed the successful encapsulation of riluzole within polycaprolactone fibers. A drug release study showed an initial burst release of riluzole within the first 24 h, followed by a sustained release of the drug over 52 days to up to approximately 400 μg released for the highest loading of riluzole within fiber patches. Finally, riluzole eluted from electrospun fibers remained pharmacologically active and was capable of counteracting glutamate-induced excitotoxicity in SH-SY5Y cells, suggesting the clinical potential of riluzole-loaded dural substitutes in counteracting the effects of secondary injury in the injured spinal cord.
- MeSH
- implantované léky MeSH
- kyselina glutamová metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- neurony účinky léků MeSH
- neuroprotektivní látky * aplikace a dávkování chemie farmakologie MeSH
- polyestery chemie MeSH
- poranění míchy * farmakoterapie MeSH
- riluzol * aplikace a dávkování chemie farmakologie MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
With an increasing focus on sustainable technologies in the pharmaceutical industry, milling provides a solvent-free approach to improve drug dissolution. Milling of drugs with an excipient offers additional opportunities to achieve supersaturation kinetics. Therefore, this work aims to present insights of co-milling fenofibrate and apremilast, two good glass formers with low and high glass transition temperatures (Tgs) respectively. Drugs were co-milled with croscarmellose sodium for various process durations followed by thermal analysis, investigation of crystallinity, surface area and dissolution. The dissolution enhancement of the low-Tg glass former fenofibrate highly correlated with the process-induced increase in surface area of co-milled systems (R2 = 0.96). In contrast, the high-Tg glass former apremilast lost its crystalline order gradually after ≥ 10 min of co-milling, and favourable supersaturation kinetics during biorelevant dissolution testing were observed. Interestingly, the melting point of co-milled apremilast decreased and linearly correlated with the highest measured drug concentration (cmax) during in vitro dissolution (onset temperature R2 = 0.98; peak temperature R2 = 0.96). The melting point depression remained stable after 90 days for apremilast, whereas fenofibrate co-milled for 20 min or more showed an increase in melting point upon storage. This study demonstrated that co-milling with croscarmellose sodium is ideally suited to good glass formers with a high Tg. The melting point depression is thereby proposed as an easily accessible critical quality attribute to estimate likely dissolution performance of drugs in dry co-milled formulations.
The utilization of 3D printing- digital light processing (DLP) technique, for the direct fabrication of microneedles encounters the problem of drug solubility in printing resin, especially if it is predominantly composed of water. The possible solution how to ensure ideal belonging of drug and water-based printing resin is its pre-formulation in nanosuspension such as nanocrystals. This study investigates the feasibility of this approach on a resin containing nanocrystals of imiquimod (IMQ), an active used in (pre)cancerous skin conditions, well known for its problematic solubility and bioavailability. The resin blend of polyethylene glycol diacrylate and N-vinylpyrrolidone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photoinitiator, was used, mixed with IMQ nanocrystals in water. The final microneedle-patches had 36 cylindrical microneedles arranged in a square grid, measuring approximately 600 μm in height and 500 μm in diameter. They contained 5wt% IMQ, which is equivalent to a commercially available cream. The homogeneity of IMQ distribution in the matrix was higher for nanocrystals compared to usual crystalline form. The release of IMQ from the patches was determined ex vivo in natural skin and revealed a 48% increase in efficacy for nanocrystal formulations compared to the crystalline form of IMQ.
- MeSH
- 3D tisk * MeSH
- aplikace kožní MeSH
- imichimod * chemie aplikace a dávkování MeSH
- jehly * MeSH
- kožní absorpce MeSH
- kůže metabolismus MeSH
- lékové transportní systémy přístrojové vybavení MeSH
- mikroinjekce přístrojové vybavení MeSH
- nanočástice * chemie aplikace a dávkování MeSH
- polyethylenglykoly chemie aplikace a dávkování MeSH
- povidon chemie MeSH
- rozpustnost * MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Spray drying and hot-melt extrusion are among the most prevalent preparation techniques used in the pharmaceutical industry to produce amorphous solid dispersions (ASDs). This study advances previous research by integrating sample production, comprehensive analytical characterization, intrinsic dissolution rate measurements, and assessments of the behavior of ASDs under elevated temperature and humidity conditions. The study focuses on indomethacin, a widely used model for poorly soluble drugs, processed with PVP K30 or HPMC E5, both commonly used polymers. The findings demonstrate that hot-melt extruded samples exhibit superior stability against recrystallization, whereas spray dried samples achieve higher intrinsic dissolution rates. Furthermore, PVP K30 significantly outperforms HPMC E5 in the co-processing of indomethacin, enhancing both the intrinsic dissolution rate and the stability.
- MeSH
- deriváty hypromelózy chemie MeSH
- farmaceutická chemie metody MeSH
- indomethacin * chemie MeSH
- krystalizace * MeSH
- povidon chemie MeSH
- příprava léků metody MeSH
- rozpustnost * MeSH
- sprejové sušení * MeSH
- stabilita léku * MeSH
- technologie extruze tavenin * metody MeSH
- uvolňování léčiv MeSH
- vlhkost MeSH
- vysoká teplota MeSH
- vysoušení metody MeSH
- Publikační typ
- časopisecké články MeSH
In recent years, deep eutectic solvents (DESs) with their outstanding solubilization properties have emerged as strong candidates for oral enabling formulations of poorly soluble drugs. This study explores the use of drug-based therapeutic DESs (THEDESs) to solubilize a poorly soluble compound with the aim of providing a fixed-dose combination of two complementary therapeutic agents. Specifically, potential anticancer effects of ibuprofen (IBU) are harnessed in a novel type of THEDES to dissolve higher amounts of abiraterone acetate (AbAc), an antitumor agent. Four IBU-based combinations were studied: 1:4 M ratio with octanoic acid (OctA), 1:5 with nonanoic acid (NonA), 1:3 with decanoic acid (DeA) or 1:2 with dodecanoic acid (DoA). Fatty acids of different chain lengths were analyzed and discussed considering surface charge densities obtained via quantum chemistry. The THEDESs listed could apparently dissolve AbAc amounts up to 1311.0 ± 125.4 mg/g in IBU:OctA THEDES, 1151.7 ± 22.2 mg/g in IBU:NonA, 1160.4 ± 33.5 mg/g in IBU:DeA, and 231.3 ± 10.7 mg/g in IBU:DoA. In vitro dissolution of the simultaneously released drugs reached 37.8 ± 9.0 % to 64.2 ± 1.0 % for IBU and 5.0 ± 3.3 % to 19.4 ± 0.1 % for AbAc. This increased to between 60.4 ± 2.8 % and 79.4 ± 5.0 % of released IBU, and 23.6 ± 1.0 % to 57.3 ± 5.8 % of released AbAc, with 20 % (w/w) Tween 80 added to the formulations. This showed the significant potential of drug-containing THEDESs as solubilizing agents for poorly soluble drugs, in the form of fixed-dose combinations of synergistic APIs.
- MeSH
- abirateron * chemie aplikace a dávkování MeSH
- farmaceutická chemie metody MeSH
- fixní kombinace léků MeSH
- ibuprofen * chemie aplikace a dávkování MeSH
- mastné kyseliny chemie MeSH
- příprava léků metody MeSH
- protinádorové látky chemie aplikace a dávkování MeSH
- rozpouštědla * chemie MeSH
- rozpustnost * MeSH
- uvolňování léčiv MeSH
- Publikační typ
- časopisecké články MeSH
Background/Objectives: Omeprazole undergoes degradation in acidic conditions, which makes it unstable in low pHs found in the gastric environment. The vast majority of already marketed omeprazole formulations use enteric polymer coatings to protect the drug from exposure to acidic pH in the stomach, allowing for drug release in the small intestine where the pH is higher. This study aimed to explore the technical aspects of using stomach acid neutralizers as an alternative to polymeric coatings for omeprazole. Methods: After evaluating various neutralizers, magnesium oxide and sodium bicarbonate were chosen to be incorporated into capsules containing omeprazole, which then underwent in vitro dissolution testing to assess their ability to maintain optimal pH levels and ensure appropriate dissolution kinetics. Hygroscopicity and chemical stability of the selected formulation were tested to prove pharmaceutical quality of the product. An in vivo pharmacokinetic study was conducted to demonstrate the efficacy of the omeprazole-sodium bicarbonate formulation in providing faster absorption in humans. Results: Sodium bicarbonate was selected as the most suitable antacid for ensuring omeprazole stabilization. Its quantity was optimized to effectively neutralize stomach acid, facilitating the rapid release and absorption of omeprazole. In vitro studies demonstrated the ability of the formulation to neutralize gastric acid within five minutes. In vivo studies indicated that maximum concentrations of omeprazole were achieved within half an hour. The product met the requirements of pharmaceutical quality. Conclusions: An easily manufacturable, fast-absorbing oral formulation was developed as an alternative to enteric-coated omeprazole.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis. METHODS: We conducted a comprehensive analysis of the trajectory of metal oxide nanoparticles (MeONPs) within pulmonary systems. Two biological media (simulated lung fluid and phagolysosomal simulated fluid) and two cell lines (macrophages and epithelial cells) were meticulously chosen to scrutinize MeONP behaviors. Their interactions with MeONPs, also referred to as nano-bio interactions, can lead to alterations in the properties of the MeONPs as well as specific cellular responses. Physicochemical properties of MeONPs were assessed in biological media. The impact of MeONPs on cell membranes, lysosomes, mitochondria, and cytoplasmic components was evaluated using fluorescent probes, colorimetric enzyme substrates, and ELISA. The fibrogenic potential of MeONPs in mouse lungs was assessed by examining collagen deposition and growth factor release. Random forest classification was employed for analyzing in chemico, in vitro and in vivo data to identify predictive descriptors. RESULTS: The nano-bio interactions induced diverse changes in the 4 characteristics of MeONPs and had variable effects on the 14 cellular functions, which were quantitatively evaluated in chemico and in vitro. Among these 18 quantitative features, seven features were found to play key roles in predicting the pro-fibrogenic potential of MeONPs. Notably, IL-1β was identified as the most important feature, contributing 27.8% to the model's prediction. Mitochondrial activity (specifically NADH levels) in macrophages followed closely with a contribution of 17.6%. The remaining five key features include TGF-β1 release and NADH levels in epithelial cells, dissolution in lysosomal simulated fluids, zeta potential, and the hydrodynamic size of MeONPs. CONCLUSIONS: The pro-fibrogenic potential of MeONPs can be predicted by combination of key features at nano-bio interfaces, simulating their behavior and interactions within the lung environment. Among the 18 quantitative features, a combination of seven in chemico and in vitro descriptors could be leveraged to predict lung fibrosis in animals. Our findings offer crucial insights for developing in silico predictive models for nano-induced pulmonary fibrosis.
- MeSH
- buňky A549 MeSH
- kovové nanočástice * toxicita chemie MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- plíce účinky léků patologie metabolismus MeSH
- plicní fibróza * chemicky indukované metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Free radical polymerization technique was used to formulate Poloxamer-188 based hydrogels for controlled delivery. A total of seven formulations were formulated with varying concentrations of polymer, monomer ad cross linker. In order to assess the structural properties of the formulated hydrogels, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM), and X-ray diffraction (XRD) were carried out. To assess the effect of pH on the release of the drug from the polymeric system, drug release studies were carried in pH 1.2 and 7.4 and it was found that release of the drug was significant in pH 7.4 as compared to that of pH 1.2 which confirmed the pH responsiveness of the system. Different kinetic models were also applied to the drug release to evaluate the mechanism of the drug release from the system. To determine the safety and biocompatibility of the system, toxicity study was also carried out for which healthy rabbits were selected and formulated hydrogels were orally administered to the rabbits. The results obtained suggested that the formulated poloxamer-188 hydrogels are biocompatible with biological system and have the potential to serve as controlled drug delivery vehicles.
- MeSH
- akrylové pryskyřice * chemie MeSH
- diferenciální skenovací kalorimetrie MeSH
- difrakce rentgenového záření MeSH
- hydrogely * chemie MeSH
- koncentrace vodíkových iontů MeSH
- králíci MeSH
- lékové transportní systémy MeSH
- léky s prodlouženým účinkem chemie farmakokinetika MeSH
- mikroskopie elektronová rastrovací MeSH
- nosiče léků chemie MeSH
- poloxamer * chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- termogravimetrie MeSH
- timolol * aplikace a dávkování farmakokinetika chemie MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: This research aims to design and evaluate an enteric-coated hard capsule dosage form for targeted delivery of biological materials, such as FMT (fecal microbiota transplant) or live microbes, to the distal parts of the GIT. The capsules are designed to be internally protected against destruction by hydrophilic filling during passage through the digestive tract. METHODS: Hard gelatin capsules and DRcapsTMcapsules based on HPMC and gellan were used to encapsulate a hydrophilic body temperature-liquefying gelatin hydrogel with caffeine or insoluble iron oxide mixture. Different combinations of polymers were tested for the internal (ethylcellulose, Eudragit® E, and polyvinyl acetate) and external (Eudragit® S, Acryl-EZE®, and cellacefate) coating. The external protects against the acidic gastric environment, while the internal protects against the liquid hydrophilic filling during passage. Coated capsules were evaluated using standard disintegration and modified dissolution methods for delayed-release dosage forms. RESULTS: Combining suitable internal (ethylcellulose 1.0 %) and external (Eudragit® S 20.0 %) coating of DRcapsTM capsules with the wiping and immersion method achieved colonic release times. While most coated capsules met the pharmaceutical requirements for delayed release, one combination stood out. Colonic times were indicated by the dissolution of soluble caffeine (during 120-720 min) measured by the dissolution method, and capsule rupture was indicated by the release of insoluble iron oxide (after 480 min) measured by the disintegration method. This promising result demonstrates the composition's suitability and potential to protect the content until it's released, inspiring hope for the future of colon-targeted delivery systems and its potential for the pharmaceutical and biomedical fields. CONCLUSION: Innovative and easy capsule coatings offer significant potential for targeted drugs, especially FMT water suspension, to the GIT, preferably the colon. The administration method is robust and not considerably affected by the quantity of internal or external coatings. It can be performed in regular laboratories without specialized individual and personalized treatment equipment, making it a practical and feasible method for drug delivery.
- MeSH
- bakteriální polysacharidy chemie MeSH
- biokompatibilní materiály chemie MeSH
- celulosa * chemie analogy a deriváty MeSH
- deriváty hypromelózy chemie MeSH
- hydrofobní a hydrofilní interakce * MeSH
- hydrogely chemie MeSH
- kofein chemie aplikace a dávkování MeSH
- kolon * metabolismus MeSH
- kyseliny polymethakrylové chemie MeSH
- lékové transportní systémy * metody MeSH
- léky s prodlouženým účinkem chemie MeSH
- polymery chemie MeSH
- polyvinyly chemie MeSH
- tobolky * MeSH
- uvolňování léčiv * MeSH
- želatina * chemie MeSH
- železité sloučeniny chemie aplikace a dávkování MeSH
- Publikační typ
- časopisecké články MeSH