Facing the Heat: Thermoregulation and Behaviour of Lowland Species of a Cold-Dwelling Butterfly Genus, Erebia
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27008409
PubMed Central
PMC4805286
DOI
10.1371/journal.pone.0150393
PII: PONE-D-15-34922
Knihovny.cz E-zdroje
- MeSH
- chování zvířat * MeSH
- druhová specificita MeSH
- motýli fyziologie MeSH
- nadmořská výška MeSH
- nízká teplota * MeSH
- podnebí MeSH
- termoregulace * MeSH
- vysoká teplota * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Understanding the potential of animals to immediately respond to changing temperatures is imperative for predicting the effects of climate change on biodiversity. Ectothermic animals, such as insects, use behavioural thermoregulation to keep their body temperature within suitable limits. It may be particularly important at warm margins of species occurrence, where populations are sensitive to increasing air temperatures. In the field, we studied thermal requirements and behavioural thermoregulation in low-altitude populations of the Satyrinae butterflies Erebia aethiops, E. euryale and E. medusa. We compared the relationship of individual body temperature with air and microhabitat temperatures for the low-altitude Erebia species to our data on seven mountain species, including a high-altitude population of E. euryale, studied in the Alps. We found that the grassland butterfly E. medusa was well adapted to the warm lowland climate and it was active under the highest air temperatures and kept the highest body temperature of all species. Contrarily, the woodland species, E. aethiops and a low-altitude population of E. euryale, kept lower body temperatures and did not search for warm microclimates as much as other species. Furthermore, temperature-dependence of daily activities also differed between the three low-altitude and the mountain species. Lastly, the different responses to ambient temperature between the low- and high-altitude populations of E. euryale suggest possible local adaptations to different climates. We highlight the importance of habitat heterogeneity for long-term species survival, because it is expected to buffer climate change consequences by providing a variety of microclimates, which can be actively explored by adults. Alpine species can take advantage of warm microclimates, while low-altitude grassland species may retreat to colder microhabitats to escape heat, if needed. However, we conclude that lowland populations of woodland species may be more severely threatened by climate warming because of the unavailability of relatively colder microclimates.
Zobrazit více v PubMed
Konvicka M, Maradova M, Benes J, Fric Z, Kepka P. Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Global Ecology and Biogeography. 2003;12(5):403–410. 10.1046/j.1466-822X.2003.00053.x DOI
Roth T, Plattner M, Amrhein V. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. PLOS One. 2014;9(1):e82490 10.1371/journal.pone.0082490 PubMed DOI PMC
Karl I, Schmitt T, Fischer K. Genetic differentiation between alpine and lowland populations of a butterfly is related to PGI enzyme genotype. Ecography. 2009;32(3):488–496. 10.1111/j.1600-0587.2008.05660.x DOI
Kjaersgaard A, Blanckenhorn WU, Pertoldi C, Loeschcke V, Kaufmann C, Hald B, et al. Plasticity in behavioural responses and resistance to temperature stress in Musca domestica. Animal Behaviour. 2015;99:123–130. 10.1016/j.anbehav.2014.11.003 DOI
Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C. Adapting to climate change: a perspective from evolutionary physiology. Climate Research. 2010;43(1):3–15. 10.3354/cr00879 DOI
Vila R, Bell CD, Macniven R, Goldman-Huertas B, Ree RH, Marshall CR, et al. Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proceedings of the Royal Society of London B: Biological Sciences. 2011;p. 20102213. PubMed PMC
Kleckova I, Cesanek M, Fric Z, Pellissier L. Diversification of the cold-adapted butterfly genus Oeneis related to Holarctic biogeography and climatic niche shifts. Molecular Phylogenetics and Evolution. 2015;92:255–265. 10.1016/j.ympev.2015.06.012 PubMed DOI
Buckley LB, Ehrenberger JC, Angilletta MJ. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology. 2015;29(8):1038–1047. 10.1111/1365-2435.12406 DOI
Illán JG, Gutierrez D, Diez SB, Wilson RJ. Elevational trends in butterfly phenology: implications for species responses to climate change. Ecological Entomology. 2012;37(2):134–144. 10.1111/j.1365-2311.2012.01345.x DOI
Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences. 2014;111(15):5610–5615. 10.1073/pnas.1316145111 PubMed DOI PMC
Turlure C, Choutt J, Baguette M, Van Dyck H. Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Global Change Biology. 2010;16(6):1883–1893. 10.1111/j.1365-2486.2009.02133.x DOI
Lawson CR, Bennie JJ, Thomas CD, Hodgson JA, Wilson RJ. Local and landscape management of an expanding range margin under climate change. Journal of Applied Ecology. 2012;49(3):552–561.
Bennett NL, Severns PM, Parmesan C, Singer MC. Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos. 2015;124(1):41–53. 10.1111/oik.01490 DOI
Kleckova I, Konvicka M, Klecka J. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. Journal of Thermal Biology. 2014;41:50–58. 10.1016/j.jtherbio.2014.02.002 PubMed DOI
Kearney M, Shine R, Porter WP. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proceedings of the National Academy of Sciences. 2009;106(10):3835–3840. 10.1073/pnas.0808913106 PubMed DOI PMC
Marschalek DA, Klein MW Sr. Distribution, ecology, and conservation of Hermes copper (Lycaenidae: Lycaena [Hermelycaena] hermes). Journal of Insect Conservation. 2010;14(6):721–730. 10.1007/s10841-010-9302-6 DOI
Slamova I, Klecka J, Konvicka M. Diurnal behavior and habitat preferences of Erebia aethiops, an aberrant lowland species of a mountain butterfly clade. Journal of Insect Behavior. 2011;24(3):230–246. 10.1007/s10905-010-9250-8 DOI
Slamova I, Klecka J, Konvicka M. Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conservation and Diversity. 2013;6(3):243–254. 10.1111/j.1752-4598.2012.00212.x DOI
Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature. 1999;399(6736):579–583. 10.1038/21181 DOI
Habel J, Ivinskis P, Schmitt T. On the limit of altitudinal range shifts—Population genetics of relict butterfly populations. Acta Zoologica Academiae Scientiarum Hungaricae. 2010;56(4):383–393.
Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Pérez HJÁ, et al. Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society of London B: Biological Sciences. 2009;p. 20081957. PubMed PMC
Bogert CM. Thermoregulation in reptiles, a factor in evolution. Evolution. 1949;3(3):195–211. 10.2307/2405558 PubMed DOI
Huey RB, Hertz PE, Sinervo B. Behavioral drive versus behavioral inertia in evolution: a null model approach. American Naturalist. 2003;161(3):357–366. 10.1086/346135 PubMed DOI
Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ. Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters. 2005;8(11):1138–1146. 10.1111/j.1461-0248.2005.00824.x PubMed DOI
Franzén M, Molander M. How threatened are alpine environments? A cross taxonomic study. Biodiversity and Conservation. 2012;21(2):517–526. 10.1007/s10531-011-0197-7 DOI
Karl I, Stoks R, De Block M, Janowitz SA, Fischer K. Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biology. 2011;17(2):676–687. 10.1111/j.1365-2486.2010.02277.x DOI
Pellissier L, Bråthen KA, Vittoz P, Yoccoz NG, Dubuis A, Meier ES, et al. Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. Global Ecology and Biogeography. 2013;22(8):933–941. 10.1111/geb.12057 PubMed DOI PMC
Ashton S, Gutierrez D, Wilson RJ. Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change. Ecological Entomology. 2009;34(4):437–446. 10.1111/j.1365-2311.2008.01068.x DOI
Vrba P, Konvička M, Nedvěd O. Reverse altitudinal cline in cold hardiness among Erebia butterflies. CryoLetters. 2012;33(4):251–258. PubMed
Louy D, Habel JC, Ulrich W, Schmitt T. Out of the Alps: The Biogeography of a disjunctly distributed mountain butterfly, the Almond-eyed ringlet Erebia alberganus (Lepidoptera, Satyrinae). Journal of Heredity. 2013;p. est081. PubMed
Besold J, Schmitt T. More northern than ever thought: refugia of the Woodland Ringlet butterfly Erebia medusa (Nymphalidae: Satyrinae) in Northern Central Europe. Journal of Zoological Systematics and Evolutionary Research. 2015;53(1):67–75. 10.1111/jzs.12076 DOI
Peña C, Witthauer H, Klečková I, Fric Z, Wahlberg N. Adaptive radiations in butterflies: evolutionary history of the genus Erebia (Nymphalidae: Satyrinae). Biological Journal of the Linnean Society. 2015;116:449–467. 10.1111/bij.12597 DOI
Schmitt T, Hewitt G. The genetic pattern of population threat and loss: a case study of butterflies. Molecular Ecology. 2004;13(1):21–31. 10.1046/j.1365-294X.2004.02020.x PubMed DOI
De Groot M, Rebušek F, Grobelnik V, Govedič M, Salamun A, Verovnik R. Distribution modelling as an approach to the conservation of a threatened alpine endemic butterfly (Lepidoptera: Satyridae). European Journal of Entomology. 2009;106(1):77–84. 10.14411/eje.2009.012 DOI
Scalercio S, Bonacci T, Mazzei A, Pizzolotto R, Brandmayr P. Better up, worse down: bidirectional consequences of three decades of climate change on a relict population of Erebia cassioides. Journal of Insect Conservation. 2014;18(4):643–650. 10.1007/s10841-014-9669-x DOI
Stuhldreher G, Fartmann T. When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly. Journal of Insect Conservation. 2014;18(5):965–979. 10.1007/s10841-014-9704-y DOI
Sonderegger P. Die Erebien der Schweiz:(Lepidoptera: Satyrinae, Genus Erebia). Eigenverlag; 2005.
van Swaay C, Cuttelod A, Collins S, Maes D, López Munguira M, Šašić M, et al. European red list of butterflies. Publications Office of the European Union, Luxembourg; 2010.
Beneš J, Konvička M, Dvořák J, Fric Z, Havelda Z, Pavlíčko A, et al. Motýli České republiky: Rozšíření a ochrana I., II.(Butterflies of the Czech Republic: Distribution and conservation I., II.). SOM, Prague; 2002.
van Swaay C, Warren M. Red data book of European butterflies (Rhopalocera). vol. 99 Council of Europe; 1999.
Stuhldreher G, Hermann G, Fartmann T. Cold-adapted species in a warming world–an explorative study on the impact of high winter temperatures on a continental butterfly. Entomologia Experimentalis et Applicata. 2014;151(3):270–279. 10.1111/eea.12193 DOI
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2013. Available from: http://www.R-project.org/
Wood S. Generalized additive models: an introduction with R. CRC press; 2006.
Munoz MM, Stimola MA, Algar AC, Conover A, Rodriguez AJ, Landestoy MA, et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proceedings of the Royal Society of London B: Biological Sciences. 2014;281(1778):20132433 10.1098/rspb.2013.2433 PubMed DOI PMC
Gunderson AR, Stillman JH. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proceedings of the Royal Society of London B: Biological Sciences. 2015;282(1808):20150401 10.1098/rspb.2015.0401 PubMed DOI PMC
Sanborn AF, Heath JE, Phillips PK, Heath MS, Noriega FG. Thermal Adaptation and Diversity in Tropical Ecosystems: Evidence from Cicadas (Hemiptera, Cicadidae). PLOS One. 2011;6(12):e29368 10.1371/journal.pone.0029368 PubMed DOI PMC
Sanborn AF, Phillips PK, Heath JE, Heath MS. Comparative thermal adaptation in cicadas (Hemiptera: Cicadidae) inhabiting Mediterranean ecosystems. Journal of Thermal Biology. 2011;36(2):150–155. 10.1016/j.jtherbio.2011.01.002 DOI
Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL. Heat freezes niche evolution. Ecology Letters. 2013;16(9):1206–1219. 10.1111/ele.12155 PubMed DOI
Konvicka M, Benes J, Kuras T. Microdistribution and diurnal behaviour of two sympatric mountain butterflies (Erebia epiphron and E. euryale): relations to vegetation and weather. Biologia. 2002;57(2):223–233.
Castaneda LE, Balanya J, Rezende EL, Santos M. Vanishing chromosomal inversion clines in Drosophila subobscura from Chile: is behavioral thermoregulation to blame? American Naturalist. 2013;182(2):249–259. 10.1086/671057 PubMed DOI
Mitchell KA, Sinclair BJ, Terblanche JS. Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus? Naturwissenschaften. 2013;100(3):281–284. 10.1007/s00114-013-1023-8 PubMed DOI
Foster SA. Evolution of behavioural phenotypes: influences of ancestry and expression. Animal Behaviour. 2013;85(5):1061–1075. 10.1016/j.anbehav.2013.02.008 DOI
Zuk M, Bastiaans E, Langkilde T, Swanger E. The role of behaviour in the establishment of novel traits. Animal Behaviour. 2014;92:333–344. 10.1016/j.anbehav.2014.02.032 DOI
Samietz J, Salser M, Dingle H. Altitudinal variation in behavioural thermoregulation: local adaptation vs. plasticity in California grasshoppers. Journal of Evolutionary Biology. 2005;18(4):1087–1096. 10.1111/j.1420-9101.2005.00893.x PubMed DOI
Ellers J, Boggs CL. Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies. Biological Journal of the Linnean Society. 2004;82(1):79–87. 10.1111/j.1095-8312.2004.00319.x DOI
Pitteloud C, Arrigo N, Suchan T, Mastretta-Yanes A, Vila R, Dinca V, et al. Ecological character displacement and geographical context of lineage divergence: macro-evolutionary insights in the butterfly genus Pyrgus. Submitted;.
Moritz C, Langham G, Kearney M, Krockenberger A, VanDerWal J, Williams S. Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012;367(1596):1680–1687. 10.1098/rstb.2012.0018 PubMed DOI PMC
Merckx T, Van Dyck H. Landscape structure and phenotypic plasticity in flight morphology in the butterfly Pararge aegeria. Oikos. 2006;113(2):226–232. 10.1111/j.2006.0030-1299.14501.x DOI
Hoffmann AA, Chown SL, Clusella-Trullas S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Functional Ecology. 2013;27(4):934–949. 10.1111/j.1365-2435.2012.02036.x DOI
Turlure C, Van Dyck H, Goffart P, Schtickzelle N, et al. Resource-based habitat use in Lycaena helle: Significance of a functional, ecological niche-oriented approach In: Habel J, Meyer M, Schmitt T, editors. Jewels in the mist: A synopsis on the endangered Violet copper butterfly, Lycaena helle. Pensoft Publishers; 2014. p. 67–86.
Lawson CR, Bennie JJ, Thomas CD, Hodgson JA, Wilson RJ. Active management of protected areas enhances metapopulation expansion under climate change. Conservation Letters. 2014;7(2):111–118. 10.1111/conl.12036 DOI
Vellend M, Verheyen K, Flinn KM, Jacquemyn H, Kolb A, Van Calster H, et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. Journal of Ecology. 2007;95(3):565–573. 10.1111/j.1365-2745.2007.01233.x DOI
Sherman PW, Watt WB. The thermal ecology of some Colias butterfly larvae. Journal of Comparative Physiology. 1973;83(1):25–40. 10.1007/BF00694570 DOI
Lamb R, Turnock W, Hayhoe H. Winter survival and outbreaks of bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), on canola. The Canadian Entomologist. 1985;117(06):727–736. 10.4039/Ent117727-6 DOI
Mercader R, Scriber J. Asymmetrical thermal constraints on the parapatric species boundaries of two widespread generalist butterflies. Ecological Entomology. 2008;33(4):537–545. 10.1111/j.1365-2311.2008.01001.x DOI
Radchuk V, Turlure C, Schtickzelle N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology. 2013;82(1):275–285. 10.1111/j.1365-2656.2012.02029.x PubMed DOI
Parmesan C. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics. 2006;37:637–669. 10.1146/annurev.ecolsys.37.091305.110100 DOI