Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.
Grantová podpora
UL1 TR001863
NCATS NIH HHS - United States
CA098122
NCI NIH HHS - United States
R01 CA134674
NCI NIH HHS - United States
CA1046282
NCI NIH HHS - United States
UL1 TR001070
NCATS NIH HHS - United States
CA167552
NCI NIH HHS - United States
CA118444
NCI NIH HHS - United States
N01 PC067009
NCI NIH HHS - United States
CA134674
NCI NIH HHS - United States
N02-PC-71105
NCI NIH HHS - United States
HHSN268201100001I
NHLBI NIH HHS - United States
R35 CA197449
NCI NIH HHS - United States
N01-RC-45035
CCR NIH HHS - United States
P30 CA016087
NCI NIH HHS - United States
HHSN261201000140C
NCI NIH HHS - United States
N01 PC067010
NCI NIH HHS - United States
R01 CA098122
NCI NIH HHS - United States
P30 CA42014
NCI NIH HHS - United States
U01 HG007033
NHGRI NIH HHS - United States
K08CA134919
NCI NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
HHSN261201000006C
NCI NIH HHS - United States
R21 CA165923
NCI NIH HHS - United States
HHSN268201100004I
NHLBI NIH HHS - United States
CA154643
NCI NIH HHS - United States
K07 CA115687
NCI NIH HHS - United States
CA098566
NCI NIH HHS - United States
CA148690
NCI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
CIHR - Canada
P30 CA086862
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
CA87969
NCI NIH HHS - United States
N01 PC067008
NCI NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
R01 CA148690
NCI NIH HHS - United States
P30 ES000260
NIEHS NIH HHS - United States
CA49449
NCI NIH HHS - United States
CA92153
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
R25 CA098566
NCI NIH HHS - United States
U58 DP000807
NCCDPHP CDC HHS - United States
N01-PC-67009
NCI NIH HHS - United States
CA149445
NCI NIH HHS - United States
R01 CA154643
NCI NIH HHS - United States
R01 CA062006
NCI NIH HHS - United States
N01 PC065064
NCI NIH HHS - United States
K08 CA134919
NCI NIH HHS - United States
UL1 TR000135
NCATS NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
R01 CA098661
NCI NIH HHS - United States
N01 CO012400
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
HHSN268201100002C
WHI NIH HHS - United States
P30 CA015083
NCI NIH HHS - United States
R01 CA092153
NCI NIH HHS - United States
HHSN261201000035I
NCI NIH HHS - United States
CA165923
NCI NIH HHS - United States
Intramural NIH HHS - United States
5R01 CA69669-02
NCI NIH HHS - United States
HHSN261201000035C
NCI NIH HHS - United States
HHSN261201000034C
NCI NIH HHS - United States
R01 CA92153
NCI NIH HHS - United States
UM1 CA167552
NCI NIH HHS - United States
N01 RC037004
CCR NIH HHS - United States
P50 CA097274
NCI NIH HHS - United States
HHSN268201100003I
NHLBI NIH HHS - United States
R01 CA049449
NCI NIH HHS - United States
HHSN268201100002I
NHLBI NIH HHS - United States
P30 CA016359
NCI NIH HHS - United States
CA186107
NCI NIH HHS - United States
N01 CN045165
NCI NIH HHS - United States
U01 CA049449
NCI NIH HHS - United States
R01 CA149445
NCI NIH HHS - United States
001
World Health Organization - International
#1U58 DP000807-01
NCCDPHP CDC HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
HHSN261201000026C
NCI NIH HHS - United States
P50 CA97274
NCI NIH HHS - United States
N01-CO-12400
NCI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
Cancer Research UK - United Kingdom
U01 CA118444
NCI NIH HHS - United States
P30 CA042014
NCI NIH HHS - United States
ES000260
NIEHS NIH HHS - United States
PubMed
27008888
PubMed Central
PMC4854019
DOI
10.1093/hmg/ddw027
PII: ddw027
Knihovny.cz E-zdroje
- MeSH
- B-buněčný lymfom genetika patologie MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- prospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- telomery patologie MeSH
- věkové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22-1.82,P-value = 8.5 × 10(-5)]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93-3.51,P-value = 4.0 × 10(-10)). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk.
Centre for Big Data Research in Health University of New South Wales Sydney NSW Australia
Centre Heni Becquerel Université de Rouen Rouen France
Chronic Disease Prevention Unit National Institute for Health and Welfare Helsinki Finland
Danish Cancer Society Research Center Copenhagen Denmark
Department of Biomedical Science and
Department of Biostatistics University of Alabama at Birmingham Birmingham AL USA
Department of Biostatistics Yale School of Public Health New Haven CT USA
Department of Environmental Health Sciences and
Department of Epidemiology Department of Biostatistics Harvard School of Public Health Boston MA USA
Department of Epidemiology German Institute for Human Nutrition Potsdam Germany
Department of Epidemiology MD Anderson Cancer Center Houston TX USA
Department of Epidemiology MRC PHE Centre for Environment and Health School of Public Health and
Department of Family Medicine and Public Health Sciences Wayne State University Detroit MI USA
Department of Health Sciences Research
Department of Health Sciences University of York York UK
Department of Health Studies University of Chicago Chicago IL USA
Department of Immunology Genetics and Pathology Uppsala University Uppsala Sweden
Department of Internal Medicine Carver College of Medicine The University of Iowa Iowa City IA USA
Department of Internal Medicine University of Utah School of Medicine Salt Lake City UT USA
Department of Medical Biosciences Umeå University Umeå Sweden
Department of Medicine Solna Karolinska Institutet Karolinska University Hospital Stockholm Sweden
Department of Pathology City of Hope National Medical Center Duarte CA USA
Department of Statistics Dongguk University Seoul Republic of Korea
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda MD USA
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Baden Württemberg Germany
Division of Cancer Etiology City of Hope Beckman Research Institute Duarte CA USA
Division of Endocrinology Diabetes and Metabolism The Ohio State University Columbus OH USA
Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle WA USA
Epidemiology Research Program American Cancer Society Atlanta GA USA
Hematology Unit Ospedale Oncologico di Riferimento Regionale A Businco Cagliari Italy
INSERM U1052 Cancer Research Center of Lyon Centre Léon Bérard Lyon France
International Agency for Research on Cancer Lyon France
Lymphoid Malignancies Unit Henri Mondor Hospital and University Paris Est Créteil France
Ontario Health Study Toronto ON Canada
School of Nursing and Human Sciences Dublin City University Dublin Ireland
School of Public Health Imperial College London London UK
The Tisch Cancer Institute and
Winship Cancer Institute Emory University School of Medicine Atlanta GA USA
Zobrazit více v PubMed
Blackburn E.H. (1991) Structure and function of telomeres. Nature, 350, 569–573. PubMed
Blackburn E.H. (1990) Telomeres and their synthesis. Science, 249, 489–490. PubMed
Blasco M.A. (2005) Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet., 6, 611–622. PubMed
Hackett J.A., Greider C.W. (2002) Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene, 21, 619–626. PubMed
Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L., Coviello G.M., Wright W.E., Weinrich S.L., Shay J.W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science, 266, 2011–2015. PubMed
Cawthon R.M. (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res., 37, e21. PubMed PMC
Slagboom P.E., Droog S., Boomsma D.I. (1994) Genetic determination of telomere size in humans: a twin study of three age groups. Am. J. Hum. Genet., 55, 876–882. PubMed PMC
Broer L., Codd V., Nyholt D.R., Deelen J., Mangino M., Willemsen G., Albrecht E., Amin N., Beekman M., de Geus E.J. et al. (2013) Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet., 21, 1163–1168. PubMed PMC
Codd V., Nelson C.P., Albrecht E., Mangino M., Deelen J., Buxton J.L., Hottenga J.J., Fischer K., Esko T., Surakka I. et al. (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet., 45, 422–427, 427e421–422. PubMed PMC
Pooley K.A., Bojesen S.E., Weischer M., Nielsen S.F., Thompson D., Amin Al Olama A., Michailidou K., Tyrer J.P., Benlloch S., Brown J. et al. (2013) A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk. Hum. Mol. Genet., 22, 5056–5064. PubMed PMC
Mangino M., Hwang S.J., Spector T.D., Hunt S.C., Kimura M., Fitzpatrick A.L., Christiansen L., Petersen I., Elbers C.C., Harris T. et al. (2012) Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum. Mol. Genet., 21, 5385–5394. PubMed PMC
Zhan Y., Song C., Karlsson R., Tillander A., Reynolds C.A., Pedersen N.L., Hagg S. (2015) Telomere length shortening and Alzheimer disease—a Mendelian Randomization Study. JAMA Neurol., 72, 1202–1203. PubMed
Iles M.M., Bishop D.T., Taylor J.C., Hayward N.K., Brossard M., Cust A.E., Dunning A.M., Lee J.E., Moses E.K., Akslen L.A. et al. (2014) The effect on melanoma risk of genes previously associated with telomere length. J. Natl. Cancer Inst., 106, Pii. PubMed PMC
Machiela M.J., Hsiung C.A., Shu X., Seow W.J., Wang Z., Matsuo K., Hong Y., Seow A., Wu C., Hosgood H.D. III et al. (2015) Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never-smoking women in Asia: a report from the female lung cancer consortium in Asia. Int. J. Cancer, 137, 311–319. PubMed PMC
Zhang C., Doherty J.A., Burgess S., Hung R.J., Lindstrom S., Kraft P., Gong J., Amos C.I., Sellers T.A., Monteiro A.N. et al. (2015) Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Hum. Mol. Genet., 24, 5356–5366. PubMed PMC
Lan Q., Cawthon R., Shen M., Weinstein S.J., Virtamo J., Lim U., Hosgood H.D. III, Albanes D., Rothman N. (2009) A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of non-Hodgkin lymphoma. Clin. Cancer Res., 15, 7429–7433. PubMed PMC
Hosnijeh F.S., Matullo G., Russo A., Guarrera S., Modica F., Nieters A., Overvad K., Guldberg P., Tjonneland A., Canzian F. et al. (2014) Prediagnostic telomere length and risk of B-cell lymphoma—results from the EPIC cohort study. Int. J. Cancer, 135, 2910–2917. PubMed
Kamranvar S.A., Chen X., Masucci M.G. (2013) Telomere dysfunction and activation of alternative lengthening of telomeres in B-lymphocytes infected by Epstein-Barr virus. Oncogene, 32, 5522–5530. PubMed PMC
Roos G., Krober A., Grabowski P., Kienle D., Buhler A., Dohner H., Rosenquist R., Stilgenbauer S. (2008) Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood, 111, 2246–2252. PubMed
Lin T.T., Letsolo B.T., Jones R.E., Rowson J., Pratt G., Hewamana S., Fegan C., Pepper C., Baird D.M. (2010) Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood, 116, 1899–1907. PubMed
Alexander D.D., Mink P.J., Adami H.O., Chang E.T., Cole P., Mandel J.S., Trichopoulos D. (2007) The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int. J. Cancer, 120(Suppl 12), 1–39. PubMed
Epel E.S., Blackburn E.H., Lin J., Dhabhar F.S., Adler N.E., Morrow J.D., Cawthon R.M. (2004) Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA, 101, 17312–17315. PubMed PMC
Puterman E., Lin J., Blackburn E., O'Donovan A., Adler N., Epel E. (2010) The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One, 5, e10837. PubMed PMC
Ornish D., Lin J., Daubenmier J., Weidner G., Epel E., Kemp C., Magbanua M.J., Marlin R., Yglecias L., Carroll P.R. et al. (2008) Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol., 9, 1048–1057. PubMed
Harris N.L., Jaffe E.S., Stein H., Banks P.M., Chan J.K., Cleary M.L., Delsol G., De Wolf-Peeters C., Falini B., Gatter K.C. et al. (1994) A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood, 84, 1361–1392. PubMed
Campo E., Swerdlow S.H., Harris N.L., Pileri S., Stein H., Jaffe E.S. (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood, 117, 5019–5032. PubMed PMC
Speedy H.E., Di Bernardo M.C., Sava G.P., Dyer M.J., Holroyd A., Wang Y., Sunter N.J., Mansouri L., Juliusson G., Smedby K.E. et al. (2014) A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat. Genet., 46, 56–60. PubMed
Berndt S.I., Skibola C.F., Joseph V., Camp N.J., Nieters A., Wang Z., Cozen W., Monnereau A., Wang S.S., Kelly R.S. et al. (2013) Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat. Genet., 45, 868–876. PubMed PMC
Cerhan J.R., Berndt S.I., Vijai J., Ghesquieres H., McKay J., Wang S.S., Wang Z., Yeager M., Conde L., de Bakker P.I. et al. (2014) Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat. Genet., 46, 1233–1238. PubMed PMC
Skibola C.F., Berndt S.I., Vijai J., Conde L., Wang Z., Yeager M., de Bakker P.I., Birmann B.M., Vajdic C.M., Foo J.N. et al. (2014) Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am. J. Hum. Genet., 95, 462–471. PubMed PMC
Vijai J., Wang Z., Berndt S.I., Skibola C.F., Slager S.L., de Sanjose S., Melbye M., Glimelius B., Bracci P.M., Conde L. et al. (2015) A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat. Commun., 6, 5751. PubMed PMC
Morton L.M., Turner J.J., Cerhan J.R., Linet M.S., Treseler P.A., Clarke C.A., Jack A., Cozen W., Maynadie M., Spinelli J.J. et al. (2007) Proposed classification of lymphoid neoplasms for epidemiologic research from the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood, 110, 695–708. PubMed PMC
Turner J.J., Morton L.M., Linet M.S., Clarke C.A., Kadin M.E., Vajdic C.M., Monnereau A., Maynadie M., Chiu B.C., Marcos-Gragera R. et al. (2010) InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood, 116, e90–e98. PubMed PMC
Howie B.N., Donnelly P., Marchini J. (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet., 5, e1000529. PubMed PMC
Genomes Project Consortium Abecasis G.R., Altshuler D., Auton A., Brooks L.D., Durbin R.M., Gibbs R.A., Hurles M.E., McVean G.A. (2010) A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073. PubMed PMC
Wang Z., Jacobs K.B., Yeager M., Hutchinson A., Sampson J., Chatterjee N., Albanes D., Berndt S.I., Chung C.C., Diver W.R. et al. (2012) Improved imputation of common and uncommon SNPs with a new reference set. Nat. Genet., 44, 6–7. PubMed PMC
Burgess S., Butterworth A., Thompson S.G. (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol., 37, 658–665. PubMed PMC
Bhattacharjee S., Rajaraman P., Jacobs K.B., Wheeler W.A., Melin B.S., Hartge P., GliomaScan C., Yeager M., Chung C.C., Chanock S.J. et al. (2012) A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am. J. Hum. Genet., 90, 821–835. PubMed PMC
R Development Core Team. (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.