Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27015633
PubMed Central
PMC4807784
DOI
10.1371/journal.pone.0152399
PII: PONE-D-15-21788
Knihovny.cz E-resources
- MeSH
- Pest Control, Biological * MeSH
- Biological Control Agents MeSH
- Biological Assay MeSH
- Coleoptera growth & development microbiology MeSH
- Nematoda MeSH
- Hypocreales * MeSH
- Larva microbiology MeSH
- Multivariate Analysis MeSH
- Paecilomyces * MeSH
- Rhabditida * MeSH
- Temperature MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biological Control Agents MeSH
The Colorado potato beetle, Leptinotarsa decemlineata, has developed resistance to most registered pesticides and has become one of the most difficult insect pests to control. Development of new biopesticides targeting this pest might solve the resistance problem and contribute to sustainable crop production. Laboratory experiments were conducted to assess the efficacy of Isaria fumosorosea (syn. Paecilomyces fumosoroseus) strain CCM 8367 against L. decemlineata when applied alone or combined with the entomopathogenic nematode Steinernema feltiae. The last-instar larvae of the Colorado potato beetle showed the highest susceptibility to I. fumosorosea followed by pre-pupae and pupae. The median lethal concentration (LC50) was estimated to be 1.03×106 blastospores/ml. The strain CCM 8367 was more virulent, causing 92.6% mortality of larvae (LT50 = 5.0 days) compared to the reference strain Apopka 97, which caused 54.5% mortality (LT50 = 7.0 days). The combined application of the fungus with the nematodes increased the mortality up to 98.0%. The best results were obtained when S. feltiae was applied simultaneously with I. fumosorosea (LT50 = 2.0 days); later application negatively affected both the penetration rate and the development of the nematodes. We can conclude that the strain CCM 8367 of I. fumosorosea is a prospective biocontrol agent against immature stages of L. decemlineata. For higher efficacy, application together with an entomopathogenic nematode is recommended.
See more in PubMed
Hare JD. Ecology and management of the Colorado potato beetle. Annu Rev Entomol. 1990;35: 81–100. 10.1146/annurev.en.35.010190.000501 DOI
Jolivet P. Le doryphore menace l’Asie Leptinotarsa decemlineata Say 1824 (Col. Chrysomelidae). Entomol Paris. 1991;47: 29–48.
Weber D. Colorado beetle: pest on the move. Pestic Outlook. 2003;14: 256–259. 10.1039/B314847P DOI
Jörg E, Beck W. Schadwirkung und Bekämpfung des Kartoffelkäfers. Kartoffelbau. 51: 202–204.
Mota-Sanchez D, Hollingworth RM, Grafius EJ, Moyer DD. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pest Manag Sci. 2006;62: 30–37. 10.1002/ps.1120 PubMed DOI
Alyokhin A, Dively G, Patterson M, Castaldo C, Rogers D, Mahoney M, et al. Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle Leptinotarsa decemlineata. Pest Manag Sci. 2007;63: 32–41. 10.1002/ps.1305 PubMed DOI
Zichova T, Kocourek F, Salava J, Nad’ova K, Stara J. Detection of organophosphate and pyrethroid resistance alleles in Czech Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) populations by molecular methods. Pest Manag Sci. 2010;66: 853–860. 10.1002/ps.1952 PubMed DOI
Szendrei Z, Grafius E, Byrne A, Ziegler A. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Manag Sci. 2012;68: 941–946. 10.1002/ps.3258 PubMed DOI
Grafius EJ, Douches DS. The present and future role of insect-resistant genetically modified potato cultivars in IPM In: Romeis J, Shelton AM, Kennedy GG, editors. Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. Grafius Edward J.; Michigan State Univ, Dept Entomol, E Lansing, MI 48824 USA: Springer, Po Box 17, 3300 Aa Dordrecht, Netherlands; 2008. pp. 195–221.
Faria MR de, Wraight SP. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol Control. 2007;43: 237–256. 10.1016/j.biocontrol.2007.08.001 DOI
Lacey L., Frutos R, Kaya H., Vail P. Insect pathogens as biological control agents: Do they have a future? Biol Control. 2001;21: 230–248. 10.1006/bcon.2001.0938 DOI
Zimmermann G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol. 2008;18: 865–901. 10.1080/09583150802471812 DOI
Fargues J, Bon MC, Manguin S, Couteaudier Y. Genetic variability among Paecilomyces fumosoroseus isolates from various geographical and host insect origins based on the rDNA-ITS regions. Mycol Res. 2002;106: 1066–1074. 10.1017/S0953756202006408 DOI
Dalleau-Clouet C, Gauthier N, Risterucci AM, Bon MC, Fargues J. Isolation and characterization of microsatellite loci from the entomopathogenic hyphomycete, Paecilomyces fumosoroseus. Mol Ecol Notes. 2005;5: 496–498. 10.1111/j.1471-8286.2005.00968.x DOI
Gauthier N, Dalleau-Clouet C, Fargues J. Microsatellite variability in the entomopathogenic fungus Paecilomyces fumosoroseus: genetic diversity and population structure. Mycologia. 2007;99: 693–704. 10.3852/mycologia.99.5.693 PubMed DOI
Cantone FA, Vandenberg JD. Intraspecific diversity in Paecilomyces fumosoroseus. Mycol Res. 1998;102: 209–215. 10.1017/S0953756297004590 DOI
Smith P. Control of Bemisia tabaci and the potential of Paecilomyces fumosoroseus as a biopesticide. Biocontrol News Inf. 1993;14: 71N–78N.
Dunlap CA, Jackson MA, Wright MS. A foam formulation of Palecilomyces fumosoroseus, an entomopathogenic biocontrol agent. Biocontrol Sci Technol. 2007;17: 513–523. 10.1080/09583150701311614 DOI
Hoy MA, Singh R, Rogers ME. Evaluations of a novel isolate of Isaria fumosorosea for control of the asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Fla Entomol. 2010;93: 24–32.
Kim JS, Je YH, Roh JY. Production of thermotolerant entomopathogenic Isaria fumosorosea SFP-198 conidia in corn-corn oil mixture. J Ind Microbiol Biotechnol. 2010;37: 419–423. 10.1007/s10295-010-0692-y PubMed DOI
Hajek AE, St Leger RJ. Interactions between fungal pathogens and insect hosts In: Mittler TE, Radovsky FJ, Resh VH, editors. Annual Review of Entomology. Boyce Thompson Inst. Plant Res., Ithaca, NY 14853–1801, USA: Annual Reviews Inc., P.O. Box 10139, 4139 El Camino Way, Palo Alto, California 94306, USA; 1994. pp. 293–322.
Ali S, Huang Z, Ren S. Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. J Pest Sci. 2010;83: 361–370. 10.1007/s10340-010-0305-6 DOI
Luangsa-ard JJ, Berkaew P, Ridkaew R, Hywel-Jones NL, Isaka M. A beauvericin hot spot in the genus Isaria. Mycol Res. 2009;113: 1389–1395. 10.1016/j.mycres.2009.08.017 PubMed DOI
Poinar GO. Nematodes for biological control of insects CRC Press Inc., Florida; 1979.
Boemare N, Akhurst R, Mourant R. Dna relatedness between Xenorhabdus spp (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen-nov. Int J Syst Bacteriol. 1993;43: 249–255.
Laumond C, Mauléon H, Kermarrec A. Données nouvelles sur le spectre d’hôtes et le parasitisme du nématode entomophage Neoaplectana carpocapsae. Entomophaga. 1979;24: 13–27. 10.1007/BF02377505 DOI
Woodring JL, Kaya HK. Steinernematid and Heterorhabditid Nematodes: A Handbook of Biology and Techniques [Internet]. Arkansas Agricultural Experiment Station; 1988. Available: http://books.google.cz/books?id=-T5AkgAACAAJ
Bathon H. Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Sci Technol. 1996;6: 421–434. 10.1080/09583159631398 DOI
Ehlers RU, Hokkanen HMT. Insect biocontrol with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp): Conclusions and recommendations of a combined OECD and COST Workshop on Scientific and Regulatory Policy Issues. Biocontrol Sci Technol. 1996;6: 295–302. 10.1080/09583159631280 DOI
Georgis R. The Biosys experiment: an insider’s perspective In: Gaugler R, editor. Entomopathogenic nematology. Wallingford: CABI; 2002. pp. 357–372. Available: http://www.cabi.org/cabebooks/ebook/20023023459
Welch HE, Briand LJ. Tests of the nematode DD 136 and an associated bacterium for control of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Can Entomol. 1961;93: 759–763. 10.4039/Ent93759-9 DOI
Stewart JG, Boiteau G, Kimpinski J. Management of late-season adults of the Colorado potato beetle (Coleoptera: Chrysomelidae) with entomopathogenic nematodes. Can Entomol. 1998;130: 509–514.
Belair G, Wright DJ, Curto G. Vegetable and tuber crop applications In: Grewal PS, Ehlers RU, ShapiroIlan DI, editors. Nematodes as Biocontrol Agents. Oxfordshire, UK: CABI Publishing; 2005. pp. 255–264.
Chang GC. Comparison of single versus multiple species of generalist predators for biological control. Environ Entomol. 1996;25: 207–212.
Guetsky R, Shtienberg D, Elad Y, Dinoor A. Combining biocontrol agents to reduce the variability of biological control. Phytopathology. 2001;91: 621–627. 10.1094/PHYTO.2001.91.7.621 PubMed DOI
Otsuki H, Yano S. Functionally different predators break down antipredator defenses of spider mites. Entomol Exp Appl. 2014;151: 27–33. 10.1111/eea.12164 DOI
Ansari MA, Shah FA, Butt TM. Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomol Exp Appl. 2008;129: 340–347. 10.1111/j.1570-7458.2008.00783.x DOI
Ansari MA, Shah FA, Butt TM. The entomopathogenic nematode Steinernema kraussei and Metarhizium anisopliae work synergistically in controlling overwintering larvae of the black vine weevil, Otiorhynchus sulcatus, in strawberry growbags. Biocontrol Sci Technol. 2010;20: 99–105. 10.1080/09583150903420031 DOI
Prenerova E, Zemek R, Volter L, Weyda F. Strain of entomopathogenic fungus Isaria fumosorosea CCM 8367 (CCEFO.011.PFR) and the method for controlling insect and mite pests. Patent US 08574566, 2013.
Haydak M. H. A food for rearing laboratory insects. J Econom Entomol. 1936;9: 1026.
White GF. A method for obtaining infective nematode larvae from cultures. Science. 1927;66: 302–303. 10.1126/science.66.1709.302-a PubMed DOI
Wolf J. Mikroskopická technika Praha: SZN; 1954.
Vacek Z. Histológia a histologická technika Martin, Slovakia: Osveta; 1974.
Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18: 265–267. 10.1093/jee/18.2.265a PubMed DOI
SAS Institute. The SAS System for Linux, Release 8.2 SAS Online doc. Version 8. Cary, North Carolina: SAS Institute; 2000.
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6: 65–70.
Siegel S, Castellan NJ. Nonparametric statistics for the behavioral sciences 2. ed., [reprinted]. Boston, Mass.: McGraw-Hill; 2003.
Elliott AC, Hynan LS. A SAS (R) macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis. Comput Methods Programs Biomed. 2011;102: 75–80. 10.1016/j.cmpb.2010.11.002 PubMed DOI
Fargues J, Delmas JC, Lebrun RA. Leaf consumption by larvae of the Colorado potato beetle (Coleoptera: Chrysomelidae) infected with the entomopathogen, Beauveria bassiana. J Econ Entomol. 1994;87: 67–71.
Wraight S., Ramos M. Application parameters affecting field efficacy of Beauveria bassiana foliar treatments against Colorado potato beetle Leptinotarsa decemlineata. Biol Control. 2002;23: 164–178. 10.1006/bcon.2001.1004 DOI
Bajan C, Kmitowa K. The effect of entomogenous fungi Paecilomyces farinosus Dicks. Brown et Smith and Beauveria bassiana Bals. Vuill. on the oviposition by Leptinotarsa decemlineata Say females, and on the survival of larvae. Ekol Pol. 1972;20: 423–432.
Bajan C, Fedorko A, Kmitowa K, Wojciechowska M. Utilization of parasitic microorganisms to decrease Colorado beetle quantity. Bull Acad Pol Sci [Biol]. 1978;26: 715–717.
Samsinakova A. Effects of fungic preparations on larvae of colorado beetle, Leptinotarsa decemlineata. Acta Entomol Bohemoslov. 1977;74: 76–80.
Ramisch I. Paecilomyces farinosus Dicks. ex Fr. als parasit des Kartoffelkafers Leptinotarsa decemlineata Say. Nova Hedwig. 1976;271: 199–214.
Landa Z, Hornák P, Charvátová H, Osborne LS. Distribution, occurrence and potential use of entomopathogenic fungi in arable soils in Czech republic. Proceedings of International Conference ISTRO “Current Trends in the Research of Soil Environment.” Brno, Czech Republic: Czech Branch of ISTRO; 2002. pp. 195–201.
Prenerová E, Zemek R, Weyda F, Volter L. Entomopathogenic fungi isolated from soil in the vicinity of Cameraria ohridella infested horse chestnut trees. In: Ehlers RU, Crickmore N, Enkerli J, Glazer I, Lopez-Ferber M, Tkaczuk C, editors. IOBC/WPRS Bulletin. 2009. pp. 321–324.
Bajan C. Paecilomyces fumosoroseus (Wize)–pathogenic agent of the Colorado beetle (Leptinotarsa decemlineata Say). Ekol Pol. 1973;21: 705–713.
Sefrova H, Lastuvka Z. Dispersal of the horse-chestnut leafminer, Cameraria ohridella Deschka & Dimic, 1986, in Europe: its course, ways and causes (Lepidoptera: Gracillariidae). Entomol Z. 2001;111: 194–198.
Zemek R, Prenerova E, Weyda F. The first record of entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycota: Hyphomycetes) on the hibernating pupae of Cameraria ohridella (Lepidoptera: Gracillariidae). Entomol Res. 2007;37: A135–A136.
Zemek R, Hussein HM, Prenerová E. Laboratory evaluation of Isaria fumosorosea against Spodoptera littoralis. Commun Agric Appl Biol Sci. 2012;77: 685–689. PubMed
Zemek R, Prenerova E, Awad M, Hussein HM. Potential of the strain of entomopathogenic fungus Isaria fumosorosea CCM 8367 as a biological control agent against Cameraria ohridella and other pests. Acta Fytotech Zootech. 2012;15: 79–80.
Hussein HM, Zemek R, Habuštová SO, Prenerová E, Adel MM. Laboratory evaluation of a new strain CCM 8367 of Isaria fumosorosea (syn. Paecilomyces fumosoroseus) on Spodoptera littoralis (Boisd.). Arch Phytopathol Plant Prot. 2013;46: 1307–1319. 10.1080/03235408.2013.765677 DOI
Vidal C, Osborne LS, Lacey LA, Fargues J. Effect of host plant on the potential of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) for controlling the silverleaf whitefly, Bemisia argentifolii (Homoptera: Aleyrodidae) in greenhouses. Biol Control. 1998;12: 191–199. 10.1006/bcon.1998.0625 DOI
Osborne LS. Biological control of whiteflies and other pests with a fungal pathogen [Internet]. WO_1990_010388_A1, 1993. Available: http://www.google.com/patents/CA1318272C?cl=en
Bolckmans K, Sterk G, Eyal J, Sels B, Stepman W. PreFeRal, (Paecilomyces fumosoroseus strain Apopka 97), A new microbial insecticide for the biological control of whiteflies in greenhouses. Meded Fac Landbouwkd En Toegepaste Biol Wet Univ Gent. 1995;60: 707–711.
Avery PB, Wekesa VW, Hunter WB, Hall DG, McKenzie CL, Osborne LS, et al. Effects of the fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae) on reduced feeding and mortality of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Biocontrol Sci Technol. 2011;21: 1065–1078. 10.1080/09583157.2011.596927 DOI
Stauderman K, Avery P, Aristizabal L, Arthurs S. Evaluation of Isaria fumosorosea (Hypocreales: Cordycipitaceae) for control of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Biocontrol Sci Technol. 2012;22: 747–761. 10.1080/09583157.2012.686599 DOI
Arthurs SP, Aristizabal LF, Avery PB. Evaluation of entomopathogenic fungi against chilli thrips, Scirtothrips dorsalis. J Insect Sci Tucson. 2013;13: 1–16. PubMed PMC
Ishibashi N, Choi D. Biological control of soil pests by mixed application of entomopathogenic and fungivorous nematodes. J Nematol. 1991;23: 175–181. PubMed PMC
Arthurs S, Heinz KM, Prasifka JR. An analysis of using entomopathogenic nematodes against above-ground pests. Bull Entomol Res. 2004;94: 297–306. 10.1079/BER2003309 PubMed DOI
Lacey LA, Georgis R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol. 2012;44: 218–225. PubMed PMC
Lebeck L, Gaugler R, Kaya H, Hara A, Johnson M. Host stage suitability of the leafminer Liriomyza trifolii (Diptera, Agromyzidae) to the entomopathogenic nematode Steinernema carposapsae (Rhabditida, Steinernematidae). J Invertebr Pathol. 1993;62: 58–63. 10.1006/jipa.1993.1074 DOI
Trdan S, Vidrih M, Andjus L, Laznik Z. Activity of four entomopathogenic nematode species against different developmental stages of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). Helminthologia. 2009;46: 14–20. 10.2478/s11687-009-0003-1 DOI
Cantelo W, Nickle W. Susceptibility of prepupae of the Colorado potato beetle (Coleoptera, Chrysomelidae) to entomopathogenic nematodes (Rhabditida, Steinernematidae, Heterorhabditidae). J Entomol Sci. 1992;27: 37–43.
Laznik Z, Toth T, Lakatos T, Vidrih M, Trdan S. Control of the Colorado potato beetle (Leptinotarsa decemlineata [Say]) on potato under field conditions: a comparison of the efficacy of foliar application of two strains of Steinernema feltiae (Filipjev) and spraying with thiametoxam. J Plant Dis Prot. 2010;117: 129–135.
Epsky N, Capinera J. Quantification of invasion of 2 strains of Steinernema carpocapsae (Weiser) into 3 lepidopteran larvae. J Nematol. 1993;25: 173–180. PubMed PMC
Adel MM, Hussein HM. Effectiveness of entomopathogenic nematodes Steinernema feltiae and Heterorhabditis bacteriophora on the Colorado potato beetle Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) under laboratory and greenhouse conditions. Arch Phytopathol Plant Prot. 2010;43: 1485–1494. 10.1080/03235400802538473 DOI
Armer CA, Berry RE, Reed GL, Jepsen SJ. Colorado potato beetle control by application of the entomopathogenic nematode Heterorhabditis marelata and potato plant alkaloid manipulation. Entomol Exp Appl. 2004;111: 47–58. 10.1111/j.0013-8703.2004.00152.x DOI
Blackburn MB, Farrar RR, Gundersen-Rindal DE, Lawrence SD, Martin PAW. Reproductive failure of Heterorhabditis marelatus in the Colorado potato beetle: Evidence of stress on the nematode symbiont Photorhabdus temperata and potential interference from the enteric bacteria of the beetle. Biol Control. 2007;42: 207–215. 10.1016/j.biocontrol.2007.04.008 DOI
Campos-Herrera R, Gutiérrez C. A laboratory study on the activity of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja strain against horticultural insect pests. J Pest Sci. 2009;82: 305–309. 10.1007/s10340-009-0247-z DOI
Thurston G, Kaya H, Burlando T, Harrison R. Milky disease bacterium as a stressor to increase susceptibility of scarabaeid larvae to an entomopathogenic nematode. J Invertebr Pathol. 1993;61: 167–172. 10.1006/jipa.1993.1030 DOI
Thurston GS, Kaya HK, Gaugler R. Characterizing the enhanced susceptibility of milky disease-infected scarabaeid grubs to entomopathogenic nematodes. Biol Control. 1994;4: 67–73. 10.1006/bcon.1994.1012 DOI
Koppenhöfer AM, Kaya HK. Additive and synergistic Interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biol Control. 1997;8: 131–137. 10.1006/bcon.1996.0498 DOI
Koppenhofer AM, Choo HY, Kaya HK, Lee DW, Gelernter WD. Increased field and greenhouse efficacy against scarab grubs with a combination of an entomopathogenic nematode and Bacillus thuringiensis. Biol Control. 1999;14: 37–44. 10.1006/bcon.1998.0663 DOI
Barbercheck M, Kaya H. Competitive interactions between entomopathogenic nematodes and Beuveria-bassiana (Deuteromycotina, Hyphomycetes) in soilborne larvae. Environ Entomol. 1991;20: 707–712.
Shapiro-Ilan DI, Jackson M, Reilly CC, Hotchkiss MW. Effects of combining an entomopathogenic fungi or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biol Control. 2004;30: 119–126. 10.1016/j.biocontrol.2003.09.014 DOI
Barberchek ME, Kaya HK. Interactions between Beauveria bassiana and the entomogenous nematodes, Steinernema feltiae and Heterorhabditis heliothidis. J Invertebr Pathol. 1990;55: 225–234. 10.1016/0022-2011(90)90058-E DOI
Kaya HK, Koppenhofer AM. Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Sci Technol. 1996;6: 357–371. 10.1080/09583159631334 DOI
Ansari MA, Tirry L, Moens M. Interaction between Metarhizium anisopliae CLO 53 and entomopathogenic nematodes for the control of Hoplia philanthus. Biol Control. 2004;31: 172–180. 10.1016/j.biocontrol.2004.04.002 DOI
Acevedo JPM, Samuels RI, Machado IR, Dolinski C. Interactions between isolates of the entomopathogenic fungus Metarhizium anisopliae and the entomopathogenic nematode Heterorhabditis bacteriophora JPM4 during infection of the sugar cane borer Diatraea saccharalis (Lepidoptera: Pyralidae). J Invertebr Pathol. 2007;96: 187–192. PubMed
Tarasco E, Santiago Alvarez C, Triggiani O, Quesada Moraga E. Laboratory studies on the competition for insect haemocoel between Beauveria bassiana and Steinernema ichnusae recovered in the same ecological niche. Biocontrol Sci Technol. 2011;21: 693–704. 10.1080/09583157.2011.570428 DOI
Interactions between Entomopathogenic Fungi and Entomopathogenic Nematodes
Efficacy of the Applied Natural Enemies on the Survival of Colorado Potato Beetle Adults
Dissemination of Isaria fumosorosea Spores by Steinernema feltiae and Heterorhabditis bacteriophora