• This record comes from PubMed

Virulence of Beauveria bassiana Strains Isolated from Cadavers of Colorado Potato Beetle, Leptinotarsa decemlineata

. 2021 Nov 30 ; 12 (12) : . [epub] 20211130

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
QK1910270 Ministry of Agriculture
RVO:60077344 Czech Academy of Sciences
E-97/01-3160-0200 Ministry of Agriculture

The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a serious, widely distributed pest of potato and other crops. This pest is able to defoliate the host plant and cause severe yield loss. Moreover, the pest quickly becomes resistant to many chemical pesticides. Therefore, the development of novel biopesticides targeting this pest is urgently needed. The purpose of this study was to obtain new strains of the entomopathogenic fungus Beauveria bassiana and assess their efficacy against L. decemlineata adults under laboratory conditions. Twelve strains were isolated from cadavers of Colorado potato beetles collected in potato fields in the Czech Republic. Test beetles were treated by suspensions of conidia at the concentration of 1 × 107 spores per milliliter and their survival was recorded daily for three weeks. The results of the bioassays revealed that all new native strains were pathogenic to L. decemlineata adults and caused mortality up to 100% at the end of the trial period with an LT50 of about 7 days. These strains were more virulent than a reference strain GHA and some of them can be recommended for the development of a new mycoinsecticide against L. decemlineata. Our findings also highlight the importance of searching for perspective strains of entomopathogenic fungi among naturally infected hosts.

See more in PubMed

Jolivet P. Le doryphore menace l’Asie Leptinotarsa decemlineata Say 1824 (Col. Chrysomelidae) Entomologiste. 1991;47:29–48.

Weber D. Colorado Beetle: Pest on the Move. Pestic. Outlook. 2003;14:256–259. doi: 10.1039/b314847p. DOI

Hare J.D. Ecology and Management of the Colorado Potato Beetle. Annu. Rev. Entomol. 1990;35:81–100. doi: 10.1146/annurev.en.35.010190.000501. DOI

Alyokhin A. Colorado Potato Beetle Management on Potatoes: Current Challenges and Future Prospects. Fruit Veg. Cereal Sci. Biotechnol. 2009;3:10–19.

Alyokhin A., Vincent C., Giordanengo P., editors. Insect Pests of Potato: Global Perspectives on Biology and Management. Elsevier; Amsterdam, The Netherlands: Academic Press; Boston, MA, USA: 2013.

Mota-Sanchez D., Hollingworth R.M., Grafius E.J., Moyer D.D. Resistance and Cross-Resistance to Neonicotinoid Insecticides and Spinosad in the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Pest Manag. Sci. 2006;62:30–37. doi: 10.1002/ps.1120. PubMed DOI

Alyokhin A., Dively G., Patterson M., Castaldo C., Rogers D., Mahoney M., Wollam J. Resistance and Cross-Resistance to Imidacloprid and Thiamethoxam in the Colorado Potato Beetle Leptinotarsa decemlineata. Pest Manag. Sci. 2007;63:32–41. doi: 10.1002/ps.1305. PubMed DOI

Zichová T., Kocourek F., Salava J., Nad’ova K., Stará J. Detection of Organophosphate and Pyrethroid Resistance Alleles in Czech Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Populations by Molecular Methods. Pest Manag. Sci. 2010;66:853–860. doi: 10.1002/ps.1952. PubMed DOI

Szendrei Z., Grafius E., Byrne A., Ziegler A. Resistance to Neonicotinoid Insecticides in Field Populations of the Colorado Potato Beetle (Coleoptera: Chrysomelidae) Pest Manag. Sci. 2012;68:941–946. doi: 10.1002/ps.3258. PubMed DOI

Alyokhin A., Baker M., Mota-Sanchez D., Dively G., Grafius E. Colorado Potato Beetle Resistance to Insecticides. Am. J. Potato Res. 2008;85:395–413. doi: 10.1007/s12230-008-9052-0. DOI

Stankovic S., Zabel A., Kostic M., Manojlovic B., Rajkovic S. Colorado Potato Beetle [Leptinotarsa decemlineata (Say)] Resistance to Organophosphates and Carbamates in Serbia. J. Pest Sci. 2004;77:11–15. doi: 10.1007/s10340-003-0020-7. DOI

Alyokhin A., Mota-Sanchez D., Baker M., Snyder W.E., Menasha S., Whalon M., Dively G., Moarsi W.F. The Red Queen in a Potato Field: Integrated Pest Management versus Chemical Dependency in Colorado Potato Beetle Control. Pest Manag. Sci. 2015;71:343–356. doi: 10.1002/ps.3826. PubMed DOI

Göldel B., Lemic D., Bažok R. Alternatives to Synthetic Insecticides in the Control of the Colorado Potato Beetle (Leptinotarsa decemlineata Say) and Their Environmental Benefits. Agriculture. 2020;10:611. doi: 10.3390/agriculture10120611. DOI

Kadoić Balaško M., Mikac K.M., Bažok R., Lemic D. Modern Techniques in Colorado Potato Beetle (Leptinotarsa decemlineata Say) Control and Resistance Management: History Review and Future Perspectives. Insects. 2020;11:581. doi: 10.3390/insects11090581. PubMed DOI PMC

Alvarez J.M., Srinivasan R., Cervantes F.A. Occurrence of the Carabid Beetle, Pterostichus melanarius (Illiger), in Potato Ecosystems of Idaho and Its Predatory Potential on the Colorado Potato Beetle and Aphids. Am. J. Potato Res. 2013;90:83–92. doi: 10.1007/s12230-012-9279-7. DOI

Sablon L., Haubruge E., Verheggen F.J. Consumption of Immature Stages of Colorado Potato Beetle by Chrysoperla carnea (Neuroptera: Chrysopidae) Larvae in the Laboratory. Am. J. Potato Res. 2013;90:51–57. doi: 10.1007/s12230-012-9275-y. DOI

Weber D.C. Insect Pests of Potato. Academic Press; Oxford, UK: 2013. Biological control of potato insect pests; pp. 399–437.

Wright R.J., Agudelo-Silva F., Georgis R. Soil Applications of Steinernematid and Heterorhabditid Nematodes for Control of Colorado Potato Beetles, Leptinotarsa decemlineata (Say) J. Nematol. 1987;19:201–206. PubMed PMC

Hussein H.M., Skoková Habuštová O., Půža V., Zemek R. Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle. PLoS ONE. 2016;11:e0152399. doi: 10.1371/journal.pone.0152399. PubMed DOI PMC

Domínguez-Arrizabalaga M., Villanueva M., Fernandez A.B., Caballero P. A Strain of Bacillus thuringiensis Containing a Novel Cry7Aa2 Gene That Is Toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Insects. 2019;10:259. doi: 10.3390/insects10090259. PubMed DOI PMC

Islam W., Adnan M., Shabbir A., Naveed H., Abubakar Y.S., Qasim M., Tayyab M., Noman A., Nisar M.S., Khan K.A., et al. Insect-Fungal-Interactions: A Detailed Review on Entomopathogenic Fungi Pathogenicity to Combat Insect Pests. Microb. Pathog. 2021;159:105122. doi: 10.1016/j.micpath.2021.105122. PubMed DOI

De Faria M.R., Wraight S.P. Mycoinsecticides and Mycoacaricides: A Comprehensive List with Worldwide Coverage and International Classification of Formulation Types. Biol. Control. 2007;43:237–256. doi: 10.1016/j.biocontrol.2007.08.001. DOI

Shahid A., Rao Q., Bakhsh A., Husnain T. Entomopathogenic Fungi as Biological Controllers: New Insights into Their Virulence and Pathogenicity. Arch. Biol. Sci. 2012;64:21–42. doi: 10.2298/ABS1201021S. DOI

Lacey L.A., Frutos R., Kaya H.K., Vail P. Insect Pathogens as Biological Control Agents: Do They Have a Future? Biol. Control. 2001;21:230–248. doi: 10.1006/bcon.2001.0938. DOI

Bajan C., Kmitowa K. The Effect of Entomogenous Fungi Paecilomyces farinosus Dicks. Brown et Smith and Beauveria bassiana Bals. Vuill. on the Oviposition by Leptinotarsa decemlineata Say Females, and on the Survival of Larvae. Ekol. Pol. 1972;20:423–432.

Bajan C., Fedorko A., Kmitowa K., Wojciechowska M. Utilization of Parasitic Microorganisms to Decrease Colorado Beetle Quantity. Bull. L’academie Pol. Sci. Ser. Sci. Biol. 1978;26:715–717.

Samsinakova A. Effects of Fungic Preparations on Larvae of Colorado Beetle, Leptinotarsa decemlineata. Acta Entomol. Bohemoslov. 1977;74:76–80.

Ramisch I. Paecilomyces farinosus Dicks. Ex Fr. Als Parasit Des Kartoffelkafers Leptinotarsa decemlineata Say. Nova Hedwig. 1976;271:199–214.

Zemek R., Prenerova E., Weyda F. The First Record of Entomopathogenic Fungus Paecilomyces fumosoroseus (Deuteromycota: Hyphomycetes) on the Hibernating Pupae of Cameraria ohridella (Lepidoptera: Gracillariidae) Entomol. Res. 2007;37:A135–A136.

Prenerová E., Zemek R., Volter L., Weyda F. Strain of Entomopathogenic Fungus Isaria fumosorosea CCM 8367 (CCEFO.011.PFR) and the Method for Controlling Insect and Mite Pests. No. US 08574566. U.S. Patent. 2013 November 5;

Prenerová E., Zemek R., Volter L., Weyda F. Strain of Entomopathogenic Fungus Isaria fumosorosea CCM 8367 (CCEFO.011.PFR) and the Method for Controlling Insect and Mite Pests. No. EP2313488. EPO Patent. 2015 April 29;

Ropek D., Kołodziejczyk M. Efficacy of Selected Insecticides and Natural Preparations against Leptinotarsa decemlineata. Potato Res. 2019;62:85–95. doi: 10.1007/s11540-018-9398-8. DOI

Campbell R.K., Anderson T.E., Semel M., Roberts D.W. Management of the Colorado Potato Beetle Using the Entomogenous Fungus Beauveria bassiana. Am. Potato J. 1985;62:29–37. doi: 10.1007/BF02871297. DOI

Fargues J., Delmas J.C., Lebrun R.A. Leaf Consumption by Larvae of the Colorado Potato Beetle (Coleoptera: Chrysomelidae) Infected with the Entomopathogen, Beauveria bassiana. J. Econ. Entomol. 1994;87:67–71. doi: 10.1093/jee/87.1.67. DOI

Wraight S.P., Ramos M.E. Application Parameters Affecting Field Efficacy of Beauveria bassiana Foliar Treatments against Colorado Potato Beetle Leptinotarsa decemlineata. Biol. Control. 2002;23:164–178. doi: 10.1006/bcon.2001.1004. DOI

Wraight S.P., Ramos M.E. Delayed Efficacy of Beauveria bassiana Foliar Spray Applications against Colorado Potato Beetle: Impacts of Number and Timing of Applications on Larval and next-Generation Adult Populations. Biol. Control. 2015;83:51–67. doi: 10.1016/j.biocontrol.2014.12.019. DOI

Yulin D., Hui W., Zhiyan M., Liu Y., Xiaodong D., Deying M. Identification and Virulence of a Fungal Entomopathogen Strain NDBJJ-BFG to Colorado Potato Beetle Leptinotarsa decemlineata (Say) J. Plant Prot. 2018;45:751–758.

Baki D., Tosun H.S., Erler F. Efficacy of Indigenous Isolates of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycota: Hyphomycetes) against the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Egypt. J. Biol. Pest Control. 2021;31:56. doi: 10.1186/s41938-021-00406-5. DOI

Chase A.R., Osborne L.S., Ferguson V.M. Selective Isolation of the Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae from an Artificial Potting Medium. Fla. Entomol. 1986;69:285. doi: 10.2307/3494930. DOI

Doyle J. DNA Protocols for Plants. In: Hewitt G.M., Johnston A.W.B., Young J.P.W., editors. Molecular Techniques in Taxonomy. Springer; Berlin/Heidelberg, Germany: 1991. pp. 283–293.

O’Donnell K. Ribosomal DNA Internal Transcribed Spacers Are Highly Divergent in the Phytopathogenic Ascomycete Fusarium sambucinum (Gibberella pulicaris) Curr. Genet. 1992;22:213–220. doi: 10.1007/BF00351728. PubMed DOI

O’Donnell K. Fusarium and its near relatives. In: Reynolds R., Taylor J.W., editors. The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CAB International; Wallingford, UK: 1993. pp. 225–233.

Dillon R.J., Charnley A.K. A Technique for Accelerating and Synchronising Germination of Conidia of the Entomopathogenic Fungus Metarhizium anisopliae. Arch. Microbiol. 1985;142:204–206. doi: 10.1007/BF00447069. DOI

Dillon R.J., Charnley A.K. Initiation of Germination in Conidia of the Entomopathogenic Fungus, Metarhizium anisopliae. Mycol. Res. 1990;94:299–304. doi: 10.1016/S0953-7562(09)80353-5. DOI

Skalický A., Bohatá A., Šimková J., Osborne L.S., Landa Z. Selection of Indigenous Isolates of Entomopathogenic Soil Fungus Metarhizium anisopliae under Laboratory Conditions. Folia Microbiol. 2014;59:269–276. doi: 10.1007/s12223-013-0293-z. PubMed DOI

SAS Institute . SAS/STAT 14.3: User’s Guide. SAS Institute; Cary, NC, USA: 2017.

SAS Institute . SAS Stat Studio 3.8: User’s Guide. SAS Institute; Cary, NC, USA: 2018.

Abbott W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. PubMed DOI

Kepenekci I., Oksal E., Saglam H., Atay T., Tulek A., Evlice E. Identification of Turkish Isolate of the Entomopathogenic Fungi, Purpureocillium lilacinum (Syn: Paecilomyces lilacinus) and Its Effect on Potato Pests, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) and Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Egypt. J. Biol. Pest Control. 2015;25:121–127.

Miętkiewski R., Sapieha A., Tkaczuk C. The Effect of Soil-Borne Entomogenous Fungi on the Mycoses of the Colorado Potato Beetle during Hibernation Period. IOBC-WPRS Bull. 1996;19:162–165.

Fargues J., Delmas J.-C., Augé J., Lebrun R.A. Fecundity and Egg Fertility in the Adult Colorado Beetle (Leptinotarsa decemlineata) Surviving Larval Infection by the Fungus Beauveria bassiana. Entomol. Exp. Appl. 1991;61:45–51. doi: 10.1111/j.1570-7458.1991.tb02394.x. DOI

Long D.W., Drummond F.A., Groden E. Susceptibility of Colorado Potato Beetle (Leptinotarsa decemlineata) Eggs to Beauveria bassiana. J. Invertebr. Pathol. 1998;71:182–183. doi: 10.1006/jipa.1997.4714. PubMed DOI

Fargues J. Étude des conditions d’infection des larves de doryphore, Leptinotarsa decemlineata say, par Beauveria bassiana (Bals.) Vuill. [Fungi imperfecti] Entomophaga. 1972;17:319–337. doi: 10.1007/BF02371185. DOI

Hafez M., Zaki F.N., Moursy A., Sabbour M. Biological Effects of the Entomopathogenic Fungus, Beauveria bassiana on the Potato Tuber Moth Phthorimaea operculella (Seller) Anz. Schädlingskunde Pflanzenschutz Umweltschutz. 1997;70:158–159. doi: 10.1007/BF01907353. DOI

Tahir M., Wakil W., Ali A., Sahi S.T. Pathogenicity of Beauveria bassiana and Metarhizium anisopliae Isolates against Larvae of the Polyphagous Pest Helicoverpa armigera. Entomol. Gen. 2019;38:225–242. doi: 10.1127/0171-8177/2019/0460. DOI

Hajek A.E., Soper R.S., Roberts D.W., Anderson T.E., Biever K.D., Ferro D.N., LeBrun R.A., Storch R.H. Foliar Applications of Beauveria bassiana (Balsamo) Vuillemin for Control of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae): An Overview of Pilot Test Results from the Northern United States. Can. Entomol. 1987;119:959–974. doi: 10.4039/Ent119959-11. DOI

Wraight S.P., Ramos M.E. Effects of Inoculation Method on Efficacy of Wettable Powder and Oil Dispersion Formulations of Beauveria bassiana against Colorado Potato Beetle Larvae under Low-Humidity Conditions. Biocontrol Sci. Technol. 2017;27:348–363. doi: 10.1080/09583157.2017.1291904. DOI

Zimmermann G. Effect of High Temperatures and Artificial Sunlight on the Viability of Conidia of Metarhizium anisopliae. J. Invertebr. Pathol. 1982;40:36–40. doi: 10.1016/0022-2011(82)90034-9. DOI

Fargues J., Goettel M.S., Smits N., Ouedraogo A., Vidal C., Lacey L.A., Lomer C.J., Rougier M. Variability in Susceptibility to Simulated Sunlight of Conidia among Isolates of Entomopathogenic Hyphomycetes. Mycopathologia. 1996;135:171–181. doi: 10.1007/BF00632339. PubMed DOI

Inyang E.N., McCartney H.A., Oyejola B., Ibrahim L., Pye B.J., Archer S.A., Butt T.M. Effect of Formulation, Application and Rain on the Persistence of the Entomogenous Fungus Metarhizium anisopliae on Oilseed Rape. Mycol. Res. 2000;104:653–661. doi: 10.1017/S0953756200002641. DOI

Klingen I., Hajek A., Meadow R., Renwick J.A.A. Effect of Brassicaceous Plants on the Survival and Infectivity of Insect Pathogenic Fungi. BioControl. 2002;47:411–425. doi: 10.1023/A:1015653910648. DOI

Pilz C., Enkerli J., Wegensteiner R., Keller S. Establishment and Persistence of the Entomopathogenic Fungus Metarhizium anisopliae in Maize Fields. J. Appl. Entomol. 2011;135:393–403. doi: 10.1111/j.1439-0418.2010.01566.x. DOI

Zemek R., Konopická J., Ul Abdin Z. Low Efficacy of Isaria fumosorosea against Box Tree Moth Cydalima perspectalis: Are Host Plant Phytochemicals Involved in Herbivore Defence against Fungal Pathogens? J. Fungi. 2020;6:342. doi: 10.3390/jof6040342. PubMed DOI PMC

Inglis G.D., Goettel M.S., Butt T.M., Strasser H. Use of hyphomycetous fungi for managing insect pests. In: Butt T.M., Jackson C., Magan N., editors. Fungi as Biocontrol Agents: Progress, Problems and Potential. CABI; Wallingford, UK: 2001. pp. 23–69.

Vandenberg J.D., Ramos M., Altre J.A. Dose–Response and Age- and Temperature-Related Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Two Isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae) Environ. Entomol. 1998;27:1017–1021. doi: 10.1093/ee/27.4.1017. DOI

Glare T.R., Milner R.J. Ecology of entomopathogenic fungi. In: Arora D.K., Ajello L., Mukerji K.G., editors. Handbook of Applied Mycology. Volume 2. Marcel Dekker; New York, NY, USA: 1991. pp. 547–612.

Ferron P., Fargues J., Riba D. Fungi as microbial insecticides against pests. In: Arora D.K., Ajello L., Mukerji K.G., editors. Handbook of Applied Mycology. Volume 2. Marcel Dekker; New York, NY, USA: 1991. pp. 665–705.

Tefera T., Vidal S. Effect of Inoculation Method and Plant Growth Medium on Endophytic Colonization of Sorghum by the Entomopathogenic Fungus Beauveria bassiana. BioControl. 2009;54:663–669. doi: 10.1007/s10526-009-9216-y. DOI

Raya-Diaz S., Sanchez-Rodriguez A.R., Segura-Fernandez J.M., del Campillo M.C., Quesada-Moraga E. Entomopathogenic Fungi-Based Mechanisms for Improved Fe Nutrition in Sorghum Plants Grown on Calcareous Substrates. PLoS ONE. 2017;12:e0185903. doi: 10.1371/journal.pone.0185903. PubMed DOI PMC

Liu H., Bauer L.S. Microbial Control of Emerald Ash Borer, Agrilus planipennis (Coleoptera: Buprestidae) with Beauveria bassiana Strain GHA: Greenhouse and Field Trials. Biol. Control. 2008;45:124–132. doi: 10.1016/j.biocontrol.2007.12.008. DOI

Mukawa S., Tooyama H., Ikegami T. Influence of Humidity on the Infection of Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), by Beauveria bassiana. Appl. Entomol. Zool. 2011;46:255–264. doi: 10.1007/s13355-011-0033-2. DOI

Clavet C., Hampton E., Requintina M., Alm S.R. Laboratory Assessment of Beauveria bassiana (Hypocreales: Clavicipitaceae) Strain GHA for Control of Listronotus maculicollis (Coleoptera: Curculionidae) Adults. J. Econ. Entomol. 2013;106:2322–2326. doi: 10.1603/EC12476. PubMed DOI

Parker B.L., Skinner M., Gouli S., Gouli V., Kim J.S. Virulence of BotaniGard® to Second Instar Brown Marmorated Stink Bug, Halyomorpha halys (Stål) (Heteroptera: Pentatomidae) Insects. 2015;6:319–324. doi: 10.3390/insects6020319. PubMed DOI PMC

Ullah M.S., Lim U.T. Laboratory Bioassay of Beauveria bassiana against Tetranychus urticae (Acari: Tetranychidae) on Leaf Discs and Potted Bean Plants. Exp. Appl. Acarol. 2015;65:307–318. doi: 10.1007/s10493-014-9871-2. PubMed DOI

Li H., Huang D., Wang Z., Yan H., Zheng J. Screening Test of Highly Virulent Strains of Entomopathogenic Fungi Beauveria bassiana against Apriona germari Larvae. Sci. Silvae Sin. 2007;43:66–71.

Wang Y.-C., Chi D.-F. Screening of High-Virulent Entomopathogenic Fungal Strains to Infect Xylotrechus rusticus Larvae. 3Biotech. 2019;9:80. doi: 10.1007/s13205-019-1602-2. PubMed DOI PMC

Guillebeau L.P. Risk–Benefit Analysis of Pesticides: The U.S. Environmental Protection Agency Perspective. Am. Entomol. 1994;40:173–179. doi: 10.1093/ae/40.3.173. DOI

Wakil W., Kavallieratos N.G., Ghazanfar M.U., Usman M., Habib A., El-Shafie H.A.F. Efficacy of Different Entomopathogenic Fungal Isolates against Four Key Stored-Grain Beetle Species. J. Stored Prod. Res. 2021;93:101845. doi: 10.1016/j.jspr.2021.101845. DOI

Viaud M., Couteaudier Y., Levis C., Riba G. Genome Organization in Beauveria bassiana: Electrophoretic Karyotype, Gene Mapping, and Telomeric Fingerprint. Fungal Genet. Biol. 1996;20:175–183. doi: 10.1006/fgbi.1996.0033. DOI

Maurer P., Couteaudier Y., Girard P.A., Bridge P.D., Riba G. Genetic Diversity of Beauveria bassiana and Relatedness to Host Insect Range. Mycol. Res. 1997;101:159–164. doi: 10.1017/S0953756296002213. DOI

Zhang Z., Lu Y., Xu W., Sui L., Du Q., Wang Y., Zhao Y., Li Q. Influence of Genetic Diversity of Seventeen Beauveria bassiana Isolates from Different Hosts on Virulence by Comparative Genomics. BMC Genom. 2020;21:451. doi: 10.1186/s12864-020-06791-9. PubMed DOI PMC

Feng M.G., Poprawski T.J., Khachatourians G.G. Production, Formulation and Application of the Entomopathogenic Fungus Beauveria bassiana for Insect Control: Current Status. Biocontrol Sci. Technol. 1994;4:3–34. doi: 10.1080/09583159409355309. DOI

Jaronski S.T. Mass Production of Beneficial Organisms. Elsevier; Amsterdam, The Netherlands: 2014. Mass Production of Entomopathogenic Fungi: State of the Art; pp. 357–413.

Newest 20 citations...

See more in
Medvik | PubMed

Interactions between Entomopathogenic Fungi and Entomopathogenic Nematodes

. 2023 Jan 08 ; 11 (1) : . [epub] 20230108

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...