Virulence of Beauveria bassiana Strains Isolated from Cadavers of Colorado Potato Beetle, Leptinotarsa decemlineata
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
QK1910270
Ministry of Agriculture
RVO:60077344
Czech Academy of Sciences
E-97/01-3160-0200
Ministry of Agriculture
PubMed
34940165
PubMed Central
PMC8703872
DOI
10.3390/insects12121077
PII: insects12121077
Knihovny.cz E-resources
- Keywords
- biological control, efficacy, entomopathogenic fungi, insect pest, mycoinsecticides, potato,
- Publication type
- Journal Article MeSH
The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a serious, widely distributed pest of potato and other crops. This pest is able to defoliate the host plant and cause severe yield loss. Moreover, the pest quickly becomes resistant to many chemical pesticides. Therefore, the development of novel biopesticides targeting this pest is urgently needed. The purpose of this study was to obtain new strains of the entomopathogenic fungus Beauveria bassiana and assess their efficacy against L. decemlineata adults under laboratory conditions. Twelve strains were isolated from cadavers of Colorado potato beetles collected in potato fields in the Czech Republic. Test beetles were treated by suspensions of conidia at the concentration of 1 × 107 spores per milliliter and their survival was recorded daily for three weeks. The results of the bioassays revealed that all new native strains were pathogenic to L. decemlineata adults and caused mortality up to 100% at the end of the trial period with an LT50 of about 7 days. These strains were more virulent than a reference strain GHA and some of them can be recommended for the development of a new mycoinsecticide against L. decemlineata. Our findings also highlight the importance of searching for perspective strains of entomopathogenic fungi among naturally infected hosts.
See more in PubMed
Jolivet P. Le doryphore menace l’Asie Leptinotarsa decemlineata Say 1824 (Col. Chrysomelidae) Entomologiste. 1991;47:29–48.
Weber D. Colorado Beetle: Pest on the Move. Pestic. Outlook. 2003;14:256–259. doi: 10.1039/b314847p. DOI
Hare J.D. Ecology and Management of the Colorado Potato Beetle. Annu. Rev. Entomol. 1990;35:81–100. doi: 10.1146/annurev.en.35.010190.000501. DOI
Alyokhin A. Colorado Potato Beetle Management on Potatoes: Current Challenges and Future Prospects. Fruit Veg. Cereal Sci. Biotechnol. 2009;3:10–19.
Alyokhin A., Vincent C., Giordanengo P., editors. Insect Pests of Potato: Global Perspectives on Biology and Management. Elsevier; Amsterdam, The Netherlands: Academic Press; Boston, MA, USA: 2013.
Mota-Sanchez D., Hollingworth R.M., Grafius E.J., Moyer D.D. Resistance and Cross-Resistance to Neonicotinoid Insecticides and Spinosad in the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Pest Manag. Sci. 2006;62:30–37. doi: 10.1002/ps.1120. PubMed DOI
Alyokhin A., Dively G., Patterson M., Castaldo C., Rogers D., Mahoney M., Wollam J. Resistance and Cross-Resistance to Imidacloprid and Thiamethoxam in the Colorado Potato Beetle Leptinotarsa decemlineata. Pest Manag. Sci. 2007;63:32–41. doi: 10.1002/ps.1305. PubMed DOI
Zichová T., Kocourek F., Salava J., Nad’ova K., Stará J. Detection of Organophosphate and Pyrethroid Resistance Alleles in Czech Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Populations by Molecular Methods. Pest Manag. Sci. 2010;66:853–860. doi: 10.1002/ps.1952. PubMed DOI
Szendrei Z., Grafius E., Byrne A., Ziegler A. Resistance to Neonicotinoid Insecticides in Field Populations of the Colorado Potato Beetle (Coleoptera: Chrysomelidae) Pest Manag. Sci. 2012;68:941–946. doi: 10.1002/ps.3258. PubMed DOI
Alyokhin A., Baker M., Mota-Sanchez D., Dively G., Grafius E. Colorado Potato Beetle Resistance to Insecticides. Am. J. Potato Res. 2008;85:395–413. doi: 10.1007/s12230-008-9052-0. DOI
Stankovic S., Zabel A., Kostic M., Manojlovic B., Rajkovic S. Colorado Potato Beetle [Leptinotarsa decemlineata (Say)] Resistance to Organophosphates and Carbamates in Serbia. J. Pest Sci. 2004;77:11–15. doi: 10.1007/s10340-003-0020-7. DOI
Alyokhin A., Mota-Sanchez D., Baker M., Snyder W.E., Menasha S., Whalon M., Dively G., Moarsi W.F. The Red Queen in a Potato Field: Integrated Pest Management versus Chemical Dependency in Colorado Potato Beetle Control. Pest Manag. Sci. 2015;71:343–356. doi: 10.1002/ps.3826. PubMed DOI
Göldel B., Lemic D., Bažok R. Alternatives to Synthetic Insecticides in the Control of the Colorado Potato Beetle (Leptinotarsa decemlineata Say) and Their Environmental Benefits. Agriculture. 2020;10:611. doi: 10.3390/agriculture10120611. DOI
Kadoić Balaško M., Mikac K.M., Bažok R., Lemic D. Modern Techniques in Colorado Potato Beetle (Leptinotarsa decemlineata Say) Control and Resistance Management: History Review and Future Perspectives. Insects. 2020;11:581. doi: 10.3390/insects11090581. PubMed DOI PMC
Alvarez J.M., Srinivasan R., Cervantes F.A. Occurrence of the Carabid Beetle, Pterostichus melanarius (Illiger), in Potato Ecosystems of Idaho and Its Predatory Potential on the Colorado Potato Beetle and Aphids. Am. J. Potato Res. 2013;90:83–92. doi: 10.1007/s12230-012-9279-7. DOI
Sablon L., Haubruge E., Verheggen F.J. Consumption of Immature Stages of Colorado Potato Beetle by Chrysoperla carnea (Neuroptera: Chrysopidae) Larvae in the Laboratory. Am. J. Potato Res. 2013;90:51–57. doi: 10.1007/s12230-012-9275-y. DOI
Weber D.C. Insect Pests of Potato. Academic Press; Oxford, UK: 2013. Biological control of potato insect pests; pp. 399–437.
Wright R.J., Agudelo-Silva F., Georgis R. Soil Applications of Steinernematid and Heterorhabditid Nematodes for Control of Colorado Potato Beetles, Leptinotarsa decemlineata (Say) J. Nematol. 1987;19:201–206. PubMed PMC
Hussein H.M., Skoková Habuštová O., Půža V., Zemek R. Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle. PLoS ONE. 2016;11:e0152399. doi: 10.1371/journal.pone.0152399. PubMed DOI PMC
Domínguez-Arrizabalaga M., Villanueva M., Fernandez A.B., Caballero P. A Strain of Bacillus thuringiensis Containing a Novel Cry7Aa2 Gene That Is Toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Insects. 2019;10:259. doi: 10.3390/insects10090259. PubMed DOI PMC
Islam W., Adnan M., Shabbir A., Naveed H., Abubakar Y.S., Qasim M., Tayyab M., Noman A., Nisar M.S., Khan K.A., et al. Insect-Fungal-Interactions: A Detailed Review on Entomopathogenic Fungi Pathogenicity to Combat Insect Pests. Microb. Pathog. 2021;159:105122. doi: 10.1016/j.micpath.2021.105122. PubMed DOI
De Faria M.R., Wraight S.P. Mycoinsecticides and Mycoacaricides: A Comprehensive List with Worldwide Coverage and International Classification of Formulation Types. Biol. Control. 2007;43:237–256. doi: 10.1016/j.biocontrol.2007.08.001. DOI
Shahid A., Rao Q., Bakhsh A., Husnain T. Entomopathogenic Fungi as Biological Controllers: New Insights into Their Virulence and Pathogenicity. Arch. Biol. Sci. 2012;64:21–42. doi: 10.2298/ABS1201021S. DOI
Lacey L.A., Frutos R., Kaya H.K., Vail P. Insect Pathogens as Biological Control Agents: Do They Have a Future? Biol. Control. 2001;21:230–248. doi: 10.1006/bcon.2001.0938. DOI
Bajan C., Kmitowa K. The Effect of Entomogenous Fungi Paecilomyces farinosus Dicks. Brown et Smith and Beauveria bassiana Bals. Vuill. on the Oviposition by Leptinotarsa decemlineata Say Females, and on the Survival of Larvae. Ekol. Pol. 1972;20:423–432.
Bajan C., Fedorko A., Kmitowa K., Wojciechowska M. Utilization of Parasitic Microorganisms to Decrease Colorado Beetle Quantity. Bull. L’academie Pol. Sci. Ser. Sci. Biol. 1978;26:715–717.
Samsinakova A. Effects of Fungic Preparations on Larvae of Colorado Beetle, Leptinotarsa decemlineata. Acta Entomol. Bohemoslov. 1977;74:76–80.
Ramisch I. Paecilomyces farinosus Dicks. Ex Fr. Als Parasit Des Kartoffelkafers Leptinotarsa decemlineata Say. Nova Hedwig. 1976;271:199–214.
Zemek R., Prenerova E., Weyda F. The First Record of Entomopathogenic Fungus Paecilomyces fumosoroseus (Deuteromycota: Hyphomycetes) on the Hibernating Pupae of Cameraria ohridella (Lepidoptera: Gracillariidae) Entomol. Res. 2007;37:A135–A136.
Prenerová E., Zemek R., Volter L., Weyda F. Strain of Entomopathogenic Fungus Isaria fumosorosea CCM 8367 (CCEFO.011.PFR) and the Method for Controlling Insect and Mite Pests. No. US 08574566. U.S. Patent. 2013 November 5;
Prenerová E., Zemek R., Volter L., Weyda F. Strain of Entomopathogenic Fungus Isaria fumosorosea CCM 8367 (CCEFO.011.PFR) and the Method for Controlling Insect and Mite Pests. No. EP2313488. EPO Patent. 2015 April 29;
Ropek D., Kołodziejczyk M. Efficacy of Selected Insecticides and Natural Preparations against Leptinotarsa decemlineata. Potato Res. 2019;62:85–95. doi: 10.1007/s11540-018-9398-8. DOI
Campbell R.K., Anderson T.E., Semel M., Roberts D.W. Management of the Colorado Potato Beetle Using the Entomogenous Fungus Beauveria bassiana. Am. Potato J. 1985;62:29–37. doi: 10.1007/BF02871297. DOI
Fargues J., Delmas J.C., Lebrun R.A. Leaf Consumption by Larvae of the Colorado Potato Beetle (Coleoptera: Chrysomelidae) Infected with the Entomopathogen, Beauveria bassiana. J. Econ. Entomol. 1994;87:67–71. doi: 10.1093/jee/87.1.67. DOI
Wraight S.P., Ramos M.E. Application Parameters Affecting Field Efficacy of Beauveria bassiana Foliar Treatments against Colorado Potato Beetle Leptinotarsa decemlineata. Biol. Control. 2002;23:164–178. doi: 10.1006/bcon.2001.1004. DOI
Wraight S.P., Ramos M.E. Delayed Efficacy of Beauveria bassiana Foliar Spray Applications against Colorado Potato Beetle: Impacts of Number and Timing of Applications on Larval and next-Generation Adult Populations. Biol. Control. 2015;83:51–67. doi: 10.1016/j.biocontrol.2014.12.019. DOI
Yulin D., Hui W., Zhiyan M., Liu Y., Xiaodong D., Deying M. Identification and Virulence of a Fungal Entomopathogen Strain NDBJJ-BFG to Colorado Potato Beetle Leptinotarsa decemlineata (Say) J. Plant Prot. 2018;45:751–758.
Baki D., Tosun H.S., Erler F. Efficacy of Indigenous Isolates of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycota: Hyphomycetes) against the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Egypt. J. Biol. Pest Control. 2021;31:56. doi: 10.1186/s41938-021-00406-5. DOI
Chase A.R., Osborne L.S., Ferguson V.M. Selective Isolation of the Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae from an Artificial Potting Medium. Fla. Entomol. 1986;69:285. doi: 10.2307/3494930. DOI
Doyle J. DNA Protocols for Plants. In: Hewitt G.M., Johnston A.W.B., Young J.P.W., editors. Molecular Techniques in Taxonomy. Springer; Berlin/Heidelberg, Germany: 1991. pp. 283–293.
O’Donnell K. Ribosomal DNA Internal Transcribed Spacers Are Highly Divergent in the Phytopathogenic Ascomycete Fusarium sambucinum (Gibberella pulicaris) Curr. Genet. 1992;22:213–220. doi: 10.1007/BF00351728. PubMed DOI
O’Donnell K. Fusarium and its near relatives. In: Reynolds R., Taylor J.W., editors. The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CAB International; Wallingford, UK: 1993. pp. 225–233.
Dillon R.J., Charnley A.K. A Technique for Accelerating and Synchronising Germination of Conidia of the Entomopathogenic Fungus Metarhizium anisopliae. Arch. Microbiol. 1985;142:204–206. doi: 10.1007/BF00447069. DOI
Dillon R.J., Charnley A.K. Initiation of Germination in Conidia of the Entomopathogenic Fungus, Metarhizium anisopliae. Mycol. Res. 1990;94:299–304. doi: 10.1016/S0953-7562(09)80353-5. DOI
Skalický A., Bohatá A., Šimková J., Osborne L.S., Landa Z. Selection of Indigenous Isolates of Entomopathogenic Soil Fungus Metarhizium anisopliae under Laboratory Conditions. Folia Microbiol. 2014;59:269–276. doi: 10.1007/s12223-013-0293-z. PubMed DOI
SAS Institute . SAS/STAT 14.3: User’s Guide. SAS Institute; Cary, NC, USA: 2017.
SAS Institute . SAS Stat Studio 3.8: User’s Guide. SAS Institute; Cary, NC, USA: 2018.
Abbott W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. PubMed DOI
Kepenekci I., Oksal E., Saglam H., Atay T., Tulek A., Evlice E. Identification of Turkish Isolate of the Entomopathogenic Fungi, Purpureocillium lilacinum (Syn: Paecilomyces lilacinus) and Its Effect on Potato Pests, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) and Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Egypt. J. Biol. Pest Control. 2015;25:121–127.
Miętkiewski R., Sapieha A., Tkaczuk C. The Effect of Soil-Borne Entomogenous Fungi on the Mycoses of the Colorado Potato Beetle during Hibernation Period. IOBC-WPRS Bull. 1996;19:162–165.
Fargues J., Delmas J.-C., Augé J., Lebrun R.A. Fecundity and Egg Fertility in the Adult Colorado Beetle (Leptinotarsa decemlineata) Surviving Larval Infection by the Fungus Beauveria bassiana. Entomol. Exp. Appl. 1991;61:45–51. doi: 10.1111/j.1570-7458.1991.tb02394.x. DOI
Long D.W., Drummond F.A., Groden E. Susceptibility of Colorado Potato Beetle (Leptinotarsa decemlineata) Eggs to Beauveria bassiana. J. Invertebr. Pathol. 1998;71:182–183. doi: 10.1006/jipa.1997.4714. PubMed DOI
Fargues J. Étude des conditions d’infection des larves de doryphore, Leptinotarsa decemlineata say, par Beauveria bassiana (Bals.) Vuill. [Fungi imperfecti] Entomophaga. 1972;17:319–337. doi: 10.1007/BF02371185. DOI
Hafez M., Zaki F.N., Moursy A., Sabbour M. Biological Effects of the Entomopathogenic Fungus, Beauveria bassiana on the Potato Tuber Moth Phthorimaea operculella (Seller) Anz. Schädlingskunde Pflanzenschutz Umweltschutz. 1997;70:158–159. doi: 10.1007/BF01907353. DOI
Tahir M., Wakil W., Ali A., Sahi S.T. Pathogenicity of Beauveria bassiana and Metarhizium anisopliae Isolates against Larvae of the Polyphagous Pest Helicoverpa armigera. Entomol. Gen. 2019;38:225–242. doi: 10.1127/0171-8177/2019/0460. DOI
Hajek A.E., Soper R.S., Roberts D.W., Anderson T.E., Biever K.D., Ferro D.N., LeBrun R.A., Storch R.H. Foliar Applications of Beauveria bassiana (Balsamo) Vuillemin for Control of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae): An Overview of Pilot Test Results from the Northern United States. Can. Entomol. 1987;119:959–974. doi: 10.4039/Ent119959-11. DOI
Wraight S.P., Ramos M.E. Effects of Inoculation Method on Efficacy of Wettable Powder and Oil Dispersion Formulations of Beauveria bassiana against Colorado Potato Beetle Larvae under Low-Humidity Conditions. Biocontrol Sci. Technol. 2017;27:348–363. doi: 10.1080/09583157.2017.1291904. DOI
Zimmermann G. Effect of High Temperatures and Artificial Sunlight on the Viability of Conidia of Metarhizium anisopliae. J. Invertebr. Pathol. 1982;40:36–40. doi: 10.1016/0022-2011(82)90034-9. DOI
Fargues J., Goettel M.S., Smits N., Ouedraogo A., Vidal C., Lacey L.A., Lomer C.J., Rougier M. Variability in Susceptibility to Simulated Sunlight of Conidia among Isolates of Entomopathogenic Hyphomycetes. Mycopathologia. 1996;135:171–181. doi: 10.1007/BF00632339. PubMed DOI
Inyang E.N., McCartney H.A., Oyejola B., Ibrahim L., Pye B.J., Archer S.A., Butt T.M. Effect of Formulation, Application and Rain on the Persistence of the Entomogenous Fungus Metarhizium anisopliae on Oilseed Rape. Mycol. Res. 2000;104:653–661. doi: 10.1017/S0953756200002641. DOI
Klingen I., Hajek A., Meadow R., Renwick J.A.A. Effect of Brassicaceous Plants on the Survival and Infectivity of Insect Pathogenic Fungi. BioControl. 2002;47:411–425. doi: 10.1023/A:1015653910648. DOI
Pilz C., Enkerli J., Wegensteiner R., Keller S. Establishment and Persistence of the Entomopathogenic Fungus Metarhizium anisopliae in Maize Fields. J. Appl. Entomol. 2011;135:393–403. doi: 10.1111/j.1439-0418.2010.01566.x. DOI
Zemek R., Konopická J., Ul Abdin Z. Low Efficacy of Isaria fumosorosea against Box Tree Moth Cydalima perspectalis: Are Host Plant Phytochemicals Involved in Herbivore Defence against Fungal Pathogens? J. Fungi. 2020;6:342. doi: 10.3390/jof6040342. PubMed DOI PMC
Inglis G.D., Goettel M.S., Butt T.M., Strasser H. Use of hyphomycetous fungi for managing insect pests. In: Butt T.M., Jackson C., Magan N., editors. Fungi as Biocontrol Agents: Progress, Problems and Potential. CABI; Wallingford, UK: 2001. pp. 23–69.
Vandenberg J.D., Ramos M., Altre J.A. Dose–Response and Age- and Temperature-Related Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Two Isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae) Environ. Entomol. 1998;27:1017–1021. doi: 10.1093/ee/27.4.1017. DOI
Glare T.R., Milner R.J. Ecology of entomopathogenic fungi. In: Arora D.K., Ajello L., Mukerji K.G., editors. Handbook of Applied Mycology. Volume 2. Marcel Dekker; New York, NY, USA: 1991. pp. 547–612.
Ferron P., Fargues J., Riba D. Fungi as microbial insecticides against pests. In: Arora D.K., Ajello L., Mukerji K.G., editors. Handbook of Applied Mycology. Volume 2. Marcel Dekker; New York, NY, USA: 1991. pp. 665–705.
Tefera T., Vidal S. Effect of Inoculation Method and Plant Growth Medium on Endophytic Colonization of Sorghum by the Entomopathogenic Fungus Beauveria bassiana. BioControl. 2009;54:663–669. doi: 10.1007/s10526-009-9216-y. DOI
Raya-Diaz S., Sanchez-Rodriguez A.R., Segura-Fernandez J.M., del Campillo M.C., Quesada-Moraga E. Entomopathogenic Fungi-Based Mechanisms for Improved Fe Nutrition in Sorghum Plants Grown on Calcareous Substrates. PLoS ONE. 2017;12:e0185903. doi: 10.1371/journal.pone.0185903. PubMed DOI PMC
Liu H., Bauer L.S. Microbial Control of Emerald Ash Borer, Agrilus planipennis (Coleoptera: Buprestidae) with Beauveria bassiana Strain GHA: Greenhouse and Field Trials. Biol. Control. 2008;45:124–132. doi: 10.1016/j.biocontrol.2007.12.008. DOI
Mukawa S., Tooyama H., Ikegami T. Influence of Humidity on the Infection of Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), by Beauveria bassiana. Appl. Entomol. Zool. 2011;46:255–264. doi: 10.1007/s13355-011-0033-2. DOI
Clavet C., Hampton E., Requintina M., Alm S.R. Laboratory Assessment of Beauveria bassiana (Hypocreales: Clavicipitaceae) Strain GHA for Control of Listronotus maculicollis (Coleoptera: Curculionidae) Adults. J. Econ. Entomol. 2013;106:2322–2326. doi: 10.1603/EC12476. PubMed DOI
Parker B.L., Skinner M., Gouli S., Gouli V., Kim J.S. Virulence of BotaniGard® to Second Instar Brown Marmorated Stink Bug, Halyomorpha halys (Stål) (Heteroptera: Pentatomidae) Insects. 2015;6:319–324. doi: 10.3390/insects6020319. PubMed DOI PMC
Ullah M.S., Lim U.T. Laboratory Bioassay of Beauveria bassiana against Tetranychus urticae (Acari: Tetranychidae) on Leaf Discs and Potted Bean Plants. Exp. Appl. Acarol. 2015;65:307–318. doi: 10.1007/s10493-014-9871-2. PubMed DOI
Li H., Huang D., Wang Z., Yan H., Zheng J. Screening Test of Highly Virulent Strains of Entomopathogenic Fungi Beauveria bassiana against Apriona germari Larvae. Sci. Silvae Sin. 2007;43:66–71.
Wang Y.-C., Chi D.-F. Screening of High-Virulent Entomopathogenic Fungal Strains to Infect Xylotrechus rusticus Larvae. 3Biotech. 2019;9:80. doi: 10.1007/s13205-019-1602-2. PubMed DOI PMC
Guillebeau L.P. Risk–Benefit Analysis of Pesticides: The U.S. Environmental Protection Agency Perspective. Am. Entomol. 1994;40:173–179. doi: 10.1093/ae/40.3.173. DOI
Wakil W., Kavallieratos N.G., Ghazanfar M.U., Usman M., Habib A., El-Shafie H.A.F. Efficacy of Different Entomopathogenic Fungal Isolates against Four Key Stored-Grain Beetle Species. J. Stored Prod. Res. 2021;93:101845. doi: 10.1016/j.jspr.2021.101845. DOI
Viaud M., Couteaudier Y., Levis C., Riba G. Genome Organization in Beauveria bassiana: Electrophoretic Karyotype, Gene Mapping, and Telomeric Fingerprint. Fungal Genet. Biol. 1996;20:175–183. doi: 10.1006/fgbi.1996.0033. DOI
Maurer P., Couteaudier Y., Girard P.A., Bridge P.D., Riba G. Genetic Diversity of Beauveria bassiana and Relatedness to Host Insect Range. Mycol. Res. 1997;101:159–164. doi: 10.1017/S0953756296002213. DOI
Zhang Z., Lu Y., Xu W., Sui L., Du Q., Wang Y., Zhao Y., Li Q. Influence of Genetic Diversity of Seventeen Beauveria bassiana Isolates from Different Hosts on Virulence by Comparative Genomics. BMC Genom. 2020;21:451. doi: 10.1186/s12864-020-06791-9. PubMed DOI PMC
Feng M.G., Poprawski T.J., Khachatourians G.G. Production, Formulation and Application of the Entomopathogenic Fungus Beauveria bassiana for Insect Control: Current Status. Biocontrol Sci. Technol. 1994;4:3–34. doi: 10.1080/09583159409355309. DOI
Jaronski S.T. Mass Production of Beneficial Organisms. Elsevier; Amsterdam, The Netherlands: 2014. Mass Production of Entomopathogenic Fungi: State of the Art; pp. 357–413.