Long-term declines of European insectivorous bird populations and potential causes

. 2019 Oct ; 33 (5) : 1120-1130. [epub] 20190326

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30912605

Evidence of declines in insect populations has recently received considerable scientific and societal attention. However, the lack of long-term insect monitoring makes it difficult to assess whether declines are geographically widespread. By contrast, bird populations are well monitored and often used as indicators of environmental change. We compared the population trends of European insectivorous birds with those of other birds to assess whether patterns in bird population trends were consistent with declines of insects. We further examined whether declines were evident for insectivores with different habitats, foraging strata, and other ecological preferences. Bird population trends were estimated for Europe (1990-2015) and Denmark (1990-2016). On average, insectivores declined over the study period (13% across Europe and 28% in Denmark), whereas omnivores had stable populations. Seedeaters also declined (28% across Europe; 34% in Denmark), but this assessment was based on fewer species than for other groups. The effects of insectivory were stronger for farmland species (especially grassland species), for ground feeders, and for cold-adapted species. Insectivory was associated with long-distance migration, which was also linked to population declines. However, many insectivores had stable populations, especially habitat generalists. Our findings suggest that the decline of insectivores is primarily associated with agricultural intensification and loss of grassland habitat. The loss of both seed and insect specialists indicates an overall trend toward bird communities dominated by diet generalists.

Declinaciones a Largo Plazo de Poblaciones de Aves Insectívoras en Europa y las Causas Probables Resumen La evidencia de las declinaciones poblacionales de insectos ha recibido recientemente una atención considerable por parte de la comunidad científica y la sociedad. Sin embargo, la falta de un monitoreo prolongado de los insectos complica valorar si estas declinaciones tienen una distribución extensa geográficamente. Como contraste, las poblaciones de aves tienen un monitoreo constante y con frecuencia se usan como indicadores del cambio climático. Comparamos las tendencias poblacionales de las aves insectívoras de Europa con las de otras aves para valorar si los patrones en las tendencias poblacionales de aves son consistentes con las declinaciones de insectos. Además examinamos si las declinaciones eran evidentes para aves insectívoras con diferentes hábitats, estratos de alimentación, y otras preferencias ecológicas. Las tendencias poblacionales de las aves se estimaron para Europa (1990 - 2015) y para Dinamarca (1990 - 2016). En promedio, las aves insectívoras declinaron a lo largo del periodo de estudio (13% en Europa y 28% en Dinamarca) mientras que las aves omnívoras tuvieron poblaciones estables. Las poblaciones de aves que se alimentan de semillas también declinaron (28% en Europa; 34% en Dinamarca), pero esta valoración se basó en menos especies que para los otros grupos. Los efectos de la insectivoría fueron más evidentes para las especies de tierras agrícolas (especialmente las especies de pastizales), para las especies que se alimentan sobre el suelo y para las especies adaptadas al frío. La insectivoría estuvo asociada con la migración de larga distancia, la cual también estuvo ligada a las declinaciones poblacionales. Sin embargo, muchas aves insectívoras tuvieron poblaciones estables, especialmente aquellas generalistas de hábitat. Nuestros hallazgos sugieren que la declinación de las aves insectívoras está asociada principalmente con la intensificación agrícola y la pérdida de pastizales. La pérdida de aves cuya alimentación es especialista en insectos o en semillas indica una tendencia general hacia comunidades de aves dominadas por aquellas con dietas generalistas.

Zobrazit více v PubMed

Barnagaud JY, Devictor V, Jiguet F, Barbet-Massin M, Le Viol I, Archaux F. 2012. Relating habitat and climatic niches in birds. PLOS ONE 7 (e32819) https://doi.org/10.1371/journal.pone.0032819.

Benton TG, Bryant DM, Cole L, Crick HQP. 2002. Linking agricultural practice to insect and bird populations: a historical study over three decades. Journal of Applied Ecology 39:673-687.

BirdLife International NatureServe. 2012. Bird species distribution maps of the world. BirdLife International, Cambridge, United Kingdom and NatureServe, Arlington, Virginia.

Bønløkke J, Madsen JJ, Thorup K, Pedersen KT, Bjerrum M, Rahbek C. 2006. The Danish bird migration atlas. Københavns Universitet, Zoologisk Museum and Rhodos, Humlebaek.

Both C, Van Turnhout CAM, Bijlsma RG, Siepel H, Van Strien AJ, Foppen RPB. 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of the Royal Society B-Biological Sciences 277:1259-1266.

Clavel J, Julliard R, Devictor V. 2011. Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment 9:222-228.

Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP. 2006. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation 132:279-291.

del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. 2014. Handbook of the birds of the world alive. Lynx Edicions, Barcelona.

Diaz S, Demissew S, Joly C, Lonsdale WM, Larigauderie A. 2015. A Rosetta Stone for nature's benefits to people. PLOS Biology 13 (e1002040) https://doi.org/10.1371/journal.pbio.1002040.

Donald PF, Green RE, Heath MF. 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proceedings of the Royal Society B-Biological Sciences 268:25-29.

Edenius L, Choi CY, Heim W, Jaakkonen T, De Jong A, Ozaki K, Roberge JM. 2017. The next common and widespread bunting to go? Global population decline in the Rustic Bunting Emberiza rustica. Bird Conservation International 27:35-44.

Eskildsen A, Larsen JD, Heldbjerg H. 2013. Use of an objective indicator species selection method shows decline in bird populations in Danish habitats. Dansk Orn Foren Tidsskr 107:191-207.

Hallmann CA, et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12 (e0185809) https://doi.org/10.1371/journal.pone.0185809.

Hallmann CA, Foppen RPB, van Turnhout CAM, de Kroon H, Jongejans E. 2014. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341.

Hart JD, Milsom TP, Fisher G, Wilkins V, Moreby SJ, Murray AWA, Robertson PA. 2006. The relationship between yellowhammer breeding performance, arthropod abundance and insecticide applications on arable farmland. Journal of Applied Ecology 43:81-91.

Hockey PAR. 2000. Patterns and correlates of bird migrations in sub-saharan Africa. Emu 100:401-417.

Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D. 2007. Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biology 13:1672-1684.

Jørgensen PS, et al. 2016. Continent-scale global change attribution in European birds - combining annual and decadal time scales. Global Change Biology 22:530-543.

Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D. 2006. Spatial segregation of specialists and generalists in bird communities. Ecology Letters 9:1237-1244.

Kramer GR, et al. 2018. Population trends in Vermivora warblers are linked to strong migratory connectivity. Proceedings of the National Academy of Sciences of the United States of America 115:E3192-E3200.

Larsen JL, Heldbjerg H, Eskildsen A. 2011. Improving national habitat specific biodiversity indicators using relative habitat use for common birds. Ecological Indicators 11:1459-1466.

Lister BC, Garcia A. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences of the United States of America 115:E10397-E10406.

Michel NL, Carson WP, Sherry TW. 2015. Do collared peccaries reduce understory insectivorous rainforest bird abundance indirectly via lianas and vine? Biotropica 47:745-757.

Nebel S, Mills A, McCracken JD, Taylor PD. 2010. Declines of aerial insectivores in North America follow a geographic gradient. Avian Conservation and Ecology 5. https://doi.org/10.5751/ACE-00391-050201.

Newton I. 2004. The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579-600.

Nyegaard T, Larsen JD, Brandtberg N, Jørgensen MF. 2015. Overvågning af de almindelige fuglearter I Danmark 1975-2014. Årsrapport for Punkttaellingsprogrammet, København.

Ockinger E, Lindborg R, Sjodin NE, Bommarco R. 2012. Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 35:259-267.

Pannekoek J, Van Strien A. 2004. TRIM 3 manual (trends and indices for monitoring data). Statistics Netherlands, Amsterdam.

Pearce-Higgins JW, Dennis P, Whittingham MJ, Yalden DW. 2010. Impacts of climate on prey abundance account for fluctuations in a population of a northern wader at the southern edge of its range. Global Change Biology 16:12-23.

Reif J, Bohning-Gaese K, Flade M, Schwarz J, Schwager M. 2011. Population trends of birds across the iron curtain: brain matters. Biological Conservation 144:2524-2533.

Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B-Statistical Methodology 71:319-392.

Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ. 2006. Long-term population declines in Afro-Palearctic migrant birds. Biological Conservation 131:93-105.

Schuch S, Bock J, Krause B, Wesche K, Schaefer M. 2012. Long-term population trends in three grassland insect groups: a comparative analysis of 1951 and 2009. Journal of Applied Entomology 135:321-331.

Sekercioglu CH. 2006. Increasing awareness of avian ecological function. Trends in Ecology & Evolution 21:464-471.

Sekercioglu CH, Ehrlich PR, Daily GC, Aygen D, Goehring D, Sandi RF. 2002. Disappearance of insectivorous birds from tropical forest fragments. Proceedings of the National Academy of Sciences of the United States of America 99:263-267.

Seward AM, Beale CM, Gilbert L, Jones TH, Thomas RJ. 2013. The impact of increased food availability on survival of a long-distance migratory bird. Ecology 94:221-230.

Sigel BJ, Sherry TW, Young BE. 2006. Avian community response to lowland tropical rainforest isolation: 40 years of change at La Selva Biological Station, Costa Rica. Conservation Biology 20:111-121.

Siriwardena GM, Stevens DK, Anderson GQA, Vickery JA, Calbrade NA, Dodd S. 2007. The effect of supplementary winter seed food on breeding populations of farmland birds: evidence from two large-scale experiments. Journal of Applied Ecology 44:920-932.

Snow DW, Perrins C. 1998. The birds of the Western Palearctic. Oxford University Press, Oxford and New York.

Soldaat LL, Pannekoek J, Verweij RJT, van Turnhout CAM, van Strien AJ. 2017. A Monte Carlo method to account for sampling error in multi-species indicators. Ecological Indicators 81:340-347.

Stanton RL, Morrissey CA, Clark RG. 2018. Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agriculture Ecosystems & Environment 254:244-254.

Storchová L, Hořák D. 2018. Life-history characteristics of European birds. Global Ecology and Biogeography 27:400-406.

Storchová L, Hořák D, Hurlbert A. 2018. Data from: life-history characteristics of European birds. Dryad Digital Repository. https://doi.org/10.5061/dryad.n6k3n.

Strebel G, Jacot A, Horch P, Spaar R. 2015. Effects of grassland intensification on Whinchats Saxicola rubetra and implications for conservation in upland habitats. Ibis 157:250-259.

Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH. 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879-1881.

Valtonen A, Hirka A, Szocs L, Ayres MP, Roininen H, Csoka G. 2017. Long-term species loss and homogenization of moth communities in Central Europe. Journal of Animal Ecology 86:730-738.

Van Turnhout CAM, Foppen RPB, Leuven R, Van Strien A, Siepel H. 2010. Life-history and ecological correlates of population change in Dutch breeding birds. Biological Conservation 143:173-181.

Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Skorpilova J, Gregory RD. 2014. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1-22.

Vickery JA, Tallowin JR, Feber RE, Asteraki EJ, Atkinson PW, Fuller RJ, Brown VK. 2001. The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. Journal of Applied Ecology 38:647-664.

Visser ME, Gienapp P, Husby A, Morrisey M, de la Hera I, Pulido F, Both C. 2015. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLOS Biology 13 (e1002120) https://doi.org/10.1371/journal.pbio.1002120.

Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. 2014. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95:2027.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change

. 2021 Dec ; 11 (23) : 16647-16660. [epub] 20211115

Measuring avian specialization

. 2019 Jul ; 9 (14) : 8378-8386. [epub] 20190701

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...