Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27102948
DOI
10.1016/j.taap.2016.04.011
PII: S0041-008X(16)30086-2
Knihovny.cz E-zdroje
- Klíčová slova
- Doxorubicin, Ethidium Bromide, Mitochondrial DNA stress, Mitochondrial transcription factor A, Nucleoid clusters,
- MeSH
- buňky Hep G2 MeSH
- DNA vazebné proteiny metabolismus MeSH
- doxorubicin MeSH
- dynaminy MeSH
- ethidium MeSH
- GTP-fosfohydrolasy metabolismus MeSH
- jaterní mitochondrie metabolismus MeSH
- lidé MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondriální importní komplex MeSH
- mitochondriální proteiny metabolismus MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- poškození DNA MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- transkripční faktory metabolismus MeSH
- transportní proteiny mitochondriální membrány metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNM1L protein, human MeSH Prohlížeč
- doxorubicin MeSH
- dynaminy MeSH
- ethidium MeSH
- GTP-fosfohydrolasy MeSH
- MAP1LC3B protein, human MeSH Prohlížeč
- mitochondriální DNA MeSH
- mitochondriální importní komplex MeSH
- mitochondriální proteiny MeSH
- NABP2 protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 MeSH
- proteiny asociované s mikrotubuly MeSH
- TFAM protein, human MeSH Prohlížeč
- TIMM23 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
- transportní proteiny mitochondriální membrány MeSH
Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (>48h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity.
Citace poskytuje Crossref.org