Plumage iridescence is associated with distinct feather microbiota in a tropical passerine
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
31501471
PubMed Central
PMC6733896
DOI
10.1038/s41598-019-49220-y
PII: 10.1038/s41598-019-49220-y
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- mikrobiota * MeSH
- Passeriformes * MeSH
- peří mikrobiologie MeSH
- pigmentace * MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Nová Guinea MeSH
Birds present a stunning diversity of plumage colors that have long fascinated evolutionary ecologists. Although plumage coloration is often linked to sexual selection, it may impact a number of physiological processes, including microbial resistance. At present, the degree to which differences between pigment-based vs. structural plumage coloration may affect the feather microbiota remains unanswered. Using quantitative PCR and DGGE profiling, we investigated feather microbial load, diversity and community structure among two allopatric subspecies of White-shouldered Fairywren, Malurus alboscapulatus that vary in expression of melanin-based vs. structural plumage coloration. We found that microbial load tended to be lower and feather microbial diversity was significantly higher in the plumage of black iridescent males, compared to black matte females and brown individuals. Moreover, black iridescent males had distinct feather microbial communities compared to black matte females and brown individuals. We suggest that distinctive nanostructure properties of iridescent male feathers or different investment in preening influence feather microbiota community composition and load. This study is the first to point to structural plumage coloration as a factor that may significantly regulate feather microbiota. Future work might explore fitness consequences and the role of microorganisms in the evolution of avian sexual dichromatism, with particular reference to iridescence.
Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
Faculty of Science Department of Zoology Charles University Viničná 7 128 44 Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic
Zobrazit více v PubMed
Echeverry-Galvis Maria Angela, Hau Michaela. Flight Performance and Feather Quality: Paying the Price of Overlapping Moult and Breeding in a Tropical Highland Bird. PLoS ONE. 2013;8(5):e61106. doi: 10.1371/journal.pone.0061106. PubMed DOI PMC
Tomotani BM, Muijres FT, Koelman J, Casagrande S, Visser ME. Simulated moult reduces flight performance but overlap with breeding does not affect breeding success in a long-distance migrant. Funct. Ecol. 2018;32:389–401. doi: 10.1111/1365-2435.12974. DOI
Pap PL, et al. Interspecific variation in the structural properties of flight feathers in birds indicates adaptation to flight requirements and habitat. Funct. Ecol. 2015;29:746–757. doi: 10.1111/1365-2435.12419. DOI
Osvath G, et al. How feathered are birds? Environment predicts both the mass and density of body feathers. Funct. Ecol. 2018;32:701–712. doi: 10.1111/1365-2435.13019. DOI
Butler LK, Rohwer S, Speidel MG. Quantifying structural variation in contour feathers to address functional variation and life history trade-offs. J. Avian Biol. 2008;39:629–639. doi: 10.1111/j.1600-048X.2008.04432.x. DOI
Pap PL, et al. A phylogenetic comparative analysis reveals correlations between body feather structure and habitat. Funct. Ecol. 2017;31:1241–1251. doi: 10.1111/1365-2435.12820. DOI
Penteriani Vincenzo, Delgado María del Mar. Living in the dark does not mean a blind life: bird and mammal visual communication in dim light. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017;372(1717):20160064. doi: 10.1098/rstb.2016.0064. PubMed DOI PMC
Moller AP, Cuervo JJ. Speciation and feather ornamentation in birds. Evolution. 1998;52:859–869. doi: 10.2307/2411280. PubMed DOI
Galván Ismael, Solano Francisco. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution. International Journal of Molecular Sciences. 2016;17(4):520. doi: 10.3390/ijms17040520. PubMed DOI PMC
LaFountain AM, Prum RO, Frank HA. Diversity, physiology, and evolution of avian plumage carotenoids and the role of carotenoid-protein interactions in plumage color appearance. Arch. Biochem. Biophys. 2015;572:201–212. doi: 10.1016/j.abb.2015.01.016. PubMed DOI
Igic B, D’Alba L, Shawkey MD. Manakins can produce iridescent and bright feather colours without melanosomes. J. Exp. Biol. 2016;219:1851–1859. doi: 10.1242/jeb.137182. PubMed DOI
Doucet SM, Shawkey MD, Hill GE, Montgomerie R. Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. J. Exp. Biol. 2006;209:380–390. doi: 10.1242/jeb.01988. PubMed DOI
Shawkey MD, D’Alba L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. T. R. Soc. B. 2017;372:9. doi: 10.1098/rstb.2016.0536. PubMed DOI PMC
D’Alba L, et al. Melanin-Based Color of Plumage: Role of Condition and of Feathers’ Microstructure. Integr. Comp. Biol. 2014;54:633–644. doi: 10.1093/icb/icu094. PubMed DOI
Eliason Chad M., Bitton Pierre-Paul, Shawkey Matthew D. How hollow melanosomes affect iridescent colour production in birds. Proceedings of the Royal Society B: Biological Sciences. 2013;280(1767):20131505. doi: 10.1098/rspb.2013.1505. PubMed DOI PMC
Dakin R, Montgomerie R. Eye for an eyespot: how iridescent plumage ocelli influence peacock mating success. Behav. Ecol. 2013;24:1048–1057. doi: 10.1093/beheco/art045. DOI
Maia R, Caetano JVO, Bao SN, Macedo RH. Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin. J. R. Soc. Interface. 2009;6:S203–S211. doi: 10.1098/rsif.2008.0460.focus. PubMed DOI PMC
Hill, G. E. & McGraw, K. J. Bird Coloration, Volume 2: Function and Evolution. (Harvard University Press, 2006).
Van Wijk S, Bourret A, Belisle M, Garant D, Pelletier F. The influence of iridescent coloration directionality on male tree swallows’ reproductive success at different breeding densities. Behav. Ecol. Sociobiol. 2016;70:1557–1569. doi: 10.1007/s00265-016-2164-5. DOI
Owens IPF, Hartley IR. Sexual dimorphism in birds: why are there so many different forms of dimorphism? P. R. Soc. B. 1998;265:397–407. doi: 10.1098/rspb.1998.0308. DOI
Garratt M, Brooks RC. Oxidative stress and condition-dependent sexual signals: more than just seeing red. P. R. Soc. B. 2012;279:3121–3130. doi: 10.1098/rspb.2012.0568. PubMed DOI PMC
Loyau A, et al. Iridescent structurally based coloration of eyespots correlates with mating success in the peacock. Behav. Ecol. 2007;18:1123–1131. doi: 10.1093/beheco/arm088. DOI
Price TD. Phenotypic plasticity, sexual selection and the evolution of colour patterns. J. Exp. Biol. 2006;209:2368–2376. doi: 10.1242/jeb.02183. PubMed DOI
Badyaev AV, Hill GE. Evolution of sexual dichromatism: contribution of carotenoid- versus melanin-based coloration. Biol. J. Linn. Soc. 2000;69:153–172. doi: 10.1111/j.1095-8312.2000.tb01196.x. DOI
Thompson CW, Hillgarth N, Leu M, McClure HE. High parasite load in house finches (Carpodacus mexicanus) is correlated with reduced expression of a sexually selected trait. Am. Nat. 1997;149:270–294. doi: 10.1086/285990. DOI
Meunier J, Pinto SF, Burri R, Roulin A. Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav. Ecol. Sociobiol. 2011;65:559–567. doi: 10.1007/s00265-010-1092-z. DOI
Roulin A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol. Rev. 2016;91:328–348. doi: 10.1111/brv.12171. PubMed DOI
Shawkey MD, Mills KL, Dale C, Hill GE. Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microb. Ecol. 2005;50:40–47. doi: 10.1007/s00248-004-0089-4. PubMed DOI
Kent CM, Burtt EH. Feather-degrading bacilli in the plumage of wild birds: Prevalence and relation to feather wear. Auk. 2016;133:583–592. doi: 10.1642/auk-16-39.1. DOI
Bisson IA, Marra PP, Burtt EH, Sikaroodi M, Gillevet PM. Variation in Plumage Microbiota Depends on Season and Migration. Microb. Ecol. 2009;58:212–220. doi: 10.1007/s00248-009-9490-3. PubMed DOI
Javůrková Veronika Gvoždíková, Kreisinger Jakub, Procházka Petr, Požgayová Milica, Ševčíková Kateřina, Brlík Vojtěch, Adamík Peter, Heneberg Petr, Porkert Jiří. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. The ISME Journal. 2019;13(9):2363–2376. doi: 10.1038/s41396-019-0438-4. PubMed DOI PMC
Miskiewicz A, Kowalczyk P, Oraibi SM, Cybulska K, Misiewicz A. Bird feathers as potential sources of pathogenic microorganisms: a new look at old diseases. Anton. Leeuw. Int. J. G. 2018;111:1493–1507. doi: 10.1007/s10482-018-1048-2. PubMed DOI PMC
Gunderson AR. Feather-degrading bacteria: a new frontier in avian and host-parasite research? Auk. 2008;125:972–979. doi: 10.1525/auk.2008.91008. DOI
Goldstein G, et al. Bacterial degradation of black and white feathers. Auk. 2004;121:656–659. doi: 10.1642/0004-8038. DOI
Gunderson AR, Frame AM, Swaddle JP, Forsyth MH. Resistance of melanized feathers to bacterial degradation: is it really so black and white? J. Avian Biol. 2008;39:539–545. doi: 10.1111/j.2008.0908-8857.04413.x. DOI
Shawkey MD, Pillai SR, Hill GE, Siefferman LM, Roberts SR. Bacteria as an agent for change in structural plumage color: Correlational and experimental evidence. Am. Nat. 2007;169:S112–S121. doi: 10.1086/510100. PubMed DOI
Shawkey MD, Pillai SR, Hill GE. Do feather-degrading bacteria affect sexually selected plumage color? Naturwissenschaften. 2009;96:123–128. doi: 10.1007/s00114-008-0462-0. PubMed DOI
Leclaire S, Pierret P, Chatelain M, Gasparini J. Feather bacterial load affects plumage condition, iridescent color, and investment in preening in pigeons. Behav. Ecol. 2014;25:1192–1198. doi: 10.1093/beheco/aru109. DOI
Leclaire S, Czirjak GA, Hammouda A, Gasparini J. Feather bacterial load shapes the trade-off between preening and immunity in pigeons. BMC Evol. Biol. 2015;15:8. doi: 10.1186/s12862-015-0338-9. PubMed DOI PMC
Saag P, et al. Plumage bacterial load is related to species, sex, biometrics and fledging success in co-occurring cavity-breeding passerines. Acta Ornithol. 2011;46:191–201. doi: 10.3161/000164511x62596. DOI
Horrocks Nicholas P. C., Matson Kevin D., Shobrak Mohammed, Tinbergen Joost M., Tieleman B. Irene. Seasonal patterns in immune indices reflect microbial loads on birds but not microbes in the wider environment. Ecosphere. 2012;3(2):art19. doi: 10.1890/ES11-00287.1. DOI
Burtt EH, Schroeder MR, Smith LA, Sroka JE, McGraw KJ. Colourful parrot feathers resist bacterial degradation. Biol. Lett. 2011;7:214–216. doi: 10.1098/rsbl.2010.0716. PubMed DOI PMC
Ruiz-De-Castaneda R, Burtt EH, Gonzalez-Braojos S, Moreno J. Bacterial degradability of an intrafeather unmelanized ornament: a role for feather-degrading bacteria in sexual selection? Biol.J. Linn. Soc. 2012;105:409–419. doi: 10.1111/j.1095-8312.2011.01806.x. DOI
Justyn NM, Peteya JA, D’Alba L, Shawkey MD. Preferential attachment and colonization of the keratinolytic bacterium Bacillus licheniformis on black- and white-striped feathers. Auk. 2017;134:466–473. doi: 10.1642/auk-16-245.1. DOI
Galeotti P, Rubolini D, Dunn PO, Fasola M. Colour polymorphism in birds: causes and functions. J. Evol. Biol. 2003;16:635–646. doi: 10.1046/j.1420-9101.2003.00569.x. PubMed DOI
Delhey K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography. 2018;41:673–683. doi: 10.1111/ecog.03040. DOI
Zink, R. M. & Remsen, J. V. J. Evolutionary processes and patterns of geographic variation in birds., Vol. 4 1–69 (Plenum Press, 1986).
Burtt EH, Ichida JM. Gloger’s rule, feather-degradlng bacteria, and color variation among song sparrows. Condor. 2004;106:681–686. doi: 10.1650/7383. DOI
Maia R, Rubenstein DR, Shawkey MD. Selection, constraint, and the evolution of coloration in African starlings. Evolution. 2016;70:1064–1079. doi: 10.1111/evo.12912. PubMed DOI
Eliason CM, Maia R, Shawkey MD. Modular color evolution facilitated by a complex nanostructure in birds. Evolution. 2015;69:357–367. doi: 10.1111/evo.12575. PubMed DOI
Hung, H. Y. et al. Himalayan black bulbuls (Hypsipetes leucocephalus niggerimus) exhibit sexual dichromatism under ultraviolet light that is invisible to the human eye. Sci. Rep. 7, 10.1038/srep43707 (2017). PubMed PMC
Hu, D. Y. et al. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Comm. 9, 10.1038/s41467-017-02515-y (2018). PubMed PMC
Eliason CM, Shawkey MD. Decreased hydrophobicity of iridescent feathers: a potential cost of shiny plumage. J. Exp. Biol. 2011;214:2157–2163. doi: 10.1242/jeb.055822. PubMed DOI
Ruiz-Rodriguez M, Tomas G, Martin-Galvez D, Ruiz-Castellano C, Soler JJ. Bacteria and the evolution of honest signals. The case of ornamental throat feathers in spotless starlings. Funct. Ecol. 2015;29:701–709. doi: 10.1111/1365-2435.12376. DOI
Simpson RK, McGraw KJ. Two ways to display: male hummingbirds show different color-display tactics based on sun orientation. Behav. Ecol. 2018;29:637–648. doi: 10.1093/beheco/ary016. DOI
Taysom AJ, Stuart-Fox D, Cardoso GC. The contribution of structural-, psittacofulvin- and melanin-based colouration to sexual dichromatism in Australasian parrots. J. Evol. Biol. 2011;24:303–313. doi: 10.1111/j.1420-9101.2010.02166.x. PubMed DOI
Doucet SM, Montgomerie R. Structural plumage colour and parasites in satin bowerbirds Ptilonorhynchus violaceus: implications for sexual selection. J. Avian Biol. 2003;34:237–242. doi: 10.1034/j.1600-048X.2003.03113.x. DOI
Doucet SM, Meadows MG. Iridescence: a functional perspective. J. R. Soc. Interface. 2009;6:S115–S132. doi: 10.1098/rsif.2008.0395.focus. PubMed DOI PMC
Bisson IA, Marra PP, Burtt EH, Sikaroodi M, Gillevet PM. A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microb. Ecol. 2007;54:65–81. doi: 10.1007/s00248-006-9173-2. PubMed DOI
Pajares, S., Bohannan, B. J. M. & Souza, V. Editorial: The Role of Microbial Communities in Tropical Ecosystems. Front. Microbiol. 7, 10.3389/fmicb.2016.01805 (2016). PubMed PMC
Bush Sarah E., Clayton Dale H. Anti-parasite behaviour of birds. Philosophical Transactions of the Royal Society B: Biological Sciences. 2018;373(1751):20170196. doi: 10.1098/rstb.2017.0196. PubMed DOI PMC
Rowley, I. & Russell, E. Fairy-wrens and Grasswrens: Maluridae., (Oxford: Oxforfd University Press, 1997).
Enbody ED, et al. Social organisation and breeding biology of the White-shouldered Fairywren (Malurus alboscapulatus) Emu. 2019;119:274–285. doi: 10.1080/01584197.2019.1595663. DOI
Enbody ED, Lantz SM, Karubian J. Production of plumage ornaments among males and females of two closely related tropical passerine bird species. Ecol. Evol. 2017;7:4024–4034. doi: 10.1002/ece3.3000. PubMed DOI PMC
Fridolfsson AK, Ellegren H. A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology. 1999;30:116–121. doi: 10.2307/3677252. DOI
Kahn NW, St John J, Quinn TW. Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk. 1998;115:1074–1078. doi: 10.2307/4089527. DOI
McMurdie PJ, Holmes S. phyloseq:an Rpackage for reproducible interactive analysis and graphics o microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Muyzer G, Dewaal EC, Uitterlinden AG. Profiling of complex microbial-populations by Denaturing Gradient Gel-Electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl.Environ. Microbiol. 1993;59:695–700. PubMed PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ.Microbiol. 2007;73:5261–5267. doi: 10.1128/aem.00062-07. PubMed DOI PMC
DeSantis TZ, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ.Microbiol. 2006;72:5069–5072. doi: 10.1128/aem.03006-05. PubMed DOI PMC
Yu G, Lam TTY, Zhu H, Guan Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 2018;35(2):3041–3043. doi: 10.1093/molbev/msy194. PubMed DOI PMC
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, USA (2016).
RStudio Team RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL, http://www.rstudio.com/ (2015).
Anderson MJ, Walsh DC. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. monogr. 2013;83:557–574. doi: 10.1890/12-2010.1. DOI
van Veelen, H. P. J., Salles, J. F. & Tieleman, B. I. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome5, 10.1186/s40168-017-0371-6 (2017). PubMed PMC
Jacob S, et al. Chemical regulation of body feather microbiota in a wild bird. Mol. Ecol. 2018;27:1727–1738. doi: 10.1111/mec.14551. PubMed DOI
Jacob J, Eigener U, Hoppe U. The structure of preen gland waxes from pelecaniform birds containing 3,7-dimethyloctan-1-ol - An active ingredient against dermatophytes. Z. Naturforsch. C. 1997;52:114–123. doi: 10.1515/znc-1997-1-220. DOI
Shawkey MD, Pillai SR, Hill GE. Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J. Avian Biol. 2003;34:345–349. doi: 10.1111/j.0908-8857.2003.03193.x. DOI
Peralta-Sanchez JM, Moller AP, Martin-Platero AM, Soler JJ. Number and colour composition of nest lining feathers predict eggshell bacterial community in barn swallow nests: an experimental study. Funct. Ecol. 2010;24:426–433. doi: 10.1111/j.1365-2435.2009.01669.x. DOI
Roulin A. Melanin pigmentation negatively correlates with plumage preening effort in barn owls. Funct. Ecol. 2007;21:264–271. doi: 10.1111/j.1365-2435.2006.01229.x. DOI
Czirjak GA, et al. Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria. Naturwissenschaften. 2013;100:145–151. doi: 10.1007/s00114-012-1005-2. PubMed DOI
Giraudeau M, et al. Effects of access to preen gland secretions on mallard plumage. Naturwissenschaften. 2010;97:577–581. doi: 10.1007/s00114-010-0673-z. PubMed DOI
Griggio M, Hoi H, Pilastro A. Plumage maintenance affects ultraviolet colour and female preference in the budgerigar. Behav. Proc. 2010;84:739–744. doi: 10.1016/j.beproc.2010.05.003. PubMed DOI
Lopez-Rull I, Pagan I, Garcia CM. Cosmetic enhancement of signal coloration: experimental evidence in the house finch. Behav. Ecol. 2010;21:781–787. doi: 10.1093/beheco/arq053. DOI
Giraudeau M, Stikeleather R, McKenna J, Hutton P, McGraw KJ. Plumage micro-organisms and preen gland size in an urbanizing context. Sci. Total Environ. 2017;580:425–429. doi: 10.1016/j.scitotenv.2016.09.224. PubMed DOI
Fulop A, Czirjak GA, Pap PL, Vagasi CI. Feather-degrading bacteria, uropygial gland size and feather quality in House Sparrows Passer domesticus. Ibis. 2016;158:362–370. doi: 10.1111/ibi.12342. DOI
Jacob Staffan, Immer Anika, Leclaire Sarah, Parthuisot Nathalie, Ducamp Christine, Espinasse Gilles, Heeb Philipp. Uropygial gland size and composition varies according to experimentally modified microbiome in Great tits. BMC Evolutionary Biology. 2014;14(1):134. doi: 10.1186/1471-2148-14-134. PubMed DOI PMC
Walther BA, Clayton DH. Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps. Behav. Ecol. 2005;16:89–95. doi: 10.1093/beheco/arh135. DOI
Viblanc Vincent A., Mathien Adeline, Saraux Claire, Viera Vanessa M., Groscolas René. It Costs to Be Clean and Fit: Energetics of Comfort Behavior in Breeding-Fasting Penguins. PLoS ONE. 2011;6(7):e21110. doi: 10.1371/journal.pone.0021110. PubMed DOI PMC
Pérez-Rodríguez Lorenzo, Jovani Roger, Stevens Martin. Shape matters: animal colour patterns as signals of individual quality. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1849):20162446. doi: 10.1098/rspb.2016.2446. PubMed DOI PMC
Shawkey MD, et al. Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae) Sci. Nat-Heidelberg. 2017;104:5. doi: 10.1007/s00114-017-1499-8. PubMed DOI
McGraw KJ. Multiple UV reflectance peaks in the iridescent neck feathers of pigeons. Naturwissenschaften. 2004;91:125–129. doi: 10.1007/s00114-003-0498-0. PubMed DOI
Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Reports on Progress in Physics. 2008;71(7):076401. doi: 10.1088/0034-4885/71/7/076401. DOI
Nelson KL, et al. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environ. Sci.-Proc. Imp. 2018;20:1089–1122. doi: 10.1039/c8em00047f. PubMed DOI PMC
Probst-Rud S, McNeill K, Ackermann M. Thiouridine residues in tRNAs are responsible for a synergistic effect of UVA and UVB light in photoinactivation of Escherichia coli. Environ. Microbiol. 2017;19:434–442. doi: 10.1111/1462-2920.13319. PubMed DOI
Zepp RG, Callaghan TV, Erickson DJ. Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. J. Photoch.Photobio. B. 1998;46:69–82. doi: 10.1016/s1011-1344(98)00186-9. DOI
Doña J, et al. Feather mites play a role in cleaning host feathers: New insights from DNA metabarcoding and microscopy. Mol. Ecol. 2019;28:203–218. doi: 10.1111/mec.14581. PubMed DOI PMC
Doña J, Proctor H, Mironov S, Serrano D, Jovani R. Global associations between birds and vane‐dwelling feather mites. Ecology. 2016;97:3242–3242. doi: 10.1002/ecy.1528. PubMed DOI