• This record comes from PubMed

Host traits rather than migration and molting strategies explain feather bacterial load in Palearctic passerines

. 2024 Nov 15 ; 27 (11) : 111079. [epub] 20240930

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Links

PubMed 39473972
PubMed Central PMC11513523
DOI 10.1016/j.isci.2024.111079
PII: S2589-0042(24)02304-6
Knihovny.cz E-resources

Feather bacterial load affects key avian life-history traits such as plumage condition, innate immunity, and reproductive success. Investigating the interplay between life-history traits and feather microbial load is critical for understanding mechanisms of host-microbiome interactions. We hypothesize that spatiotemporal variation associated with migration and molting, body size affecting colonizable body surface area, and preening intensity could shape feather bacterial load. Integrating 16S rDNA-qPCR and flow cytometry, we examined total and viable bacterial loads in the feathers of 316 individuals of 24 Palearctic passerine species. We found that viable bacterial load in feathers was lower in larger species and higher in residents compared to migrants. In contrast, total bacterial load was not explained by any of the life-history traits but varied considerably among species, sampling sites, and years. By pinpointing main drivers of bacterial loads on avian body surfaces, we identify key mechanisms shaping host-microbiome interactions and open alternative research directions.

See more in PubMed

Pap P.L., Osváth G., Sándor K., Vincze O., Bărbos L., Marton A., Nudds R.L., Vágási C.I. Interspecific variation in the structural properties of flight feathers in birds indicates adaptation to flight requirements and habitat. Funct. Ecol. 2015;29:746–757. doi: 10.1111/1365-2435.12419. DOI

Osvath G., Daubner T., Dyke G., Fuisz T.I., Nord A., Penzes J., Vargancsik D., Vagasi C.I., Vincze O., Pap P.L. How feathered are birds? Environment predicts both the mass and density of body feathers. Funct. Ecol. 2018;32:701–712. doi: 10.1111/1365-2435.13019. DOI

Olsen B.J., Greenberg R., Liu I.A., Felch J.M., Walters J.R. Interactions between sexual and natural selection on the evolution of a plumage badge. Evol. Ecol. 2010;24:731–748. doi: 10.1007/s10682-009-9330-4. DOI

Moller A.P., Cuervo J.J. Speciation and feather ornamentation in birds. Evolution. 1998;52:859–869. doi: 10.2307/2411280. PubMed DOI

Shu W.S., Huang L.N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 2022;20:219–235. doi: 10.1038/s41579-021-00648-y. PubMed DOI

Karimi B., Maron P.A., Boure N.C.P., Bernard N., Gilbert D., Ranjard L. Microbial diversity and ecological networks as indicators of environmental quality. Environ. Chem. Lett. 2017;15:265–281. doi: 10.1007/s10311-017-0614-6. DOI

Javurkova V.G., Kreisinger J., Prochazka P., Pozgayova M., Sevcikova K., Brlik V., Adamik P., Heneberg P., Porkert J. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 2019;13:2363–2376. doi: 10.1038/s41396-019-0438-4. PubMed DOI PMC

van Veelen H.P.J., Falcao Salles J., Tieleman B.I. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5:156. doi: 10.1186/s40168-017-0371-6. PubMed DOI PMC

Jacob S., Sallé L., Zinger L., Chaine A.S., Ducamp C., Boutault L., Russell A.F., Heeb P. Chemical regulation of body feather microbiota in a wild bird. Mol. Ecol. 2018;27:1727–1738. doi: 10.1111/mec.14551. PubMed DOI

Campagna S., Mardon J., Celerier A., Bonadonna F. Potential semiochemical molecules from birds: a practical and comprehensive compilation of the last 20 years studies. Chem. Senses. 2012;37:3–25. doi: 10.1093/chemse/bjr067. PubMed DOI

Mardon J., Saunders S.M., Bonadonna F. From preen secretions to plumage: the chemical trajectory of Blue Petrels’ Halobaena caerulea social scent. J. Avian Biol. 2011;42:29–38. doi: 10.1111/j.1600-048X.2010.05113.x. DOI

Gabirot M., Buatois B., Müller C.T., Bonadonna F. Odour of King Penguin feathers analysed using direct thermal desorption discriminates between individuals but not sexes. Ibis. 2018;160:379–389. doi: 10.1111/ibi.12544. DOI

Leclaire S., Strandh M., Dell’Ariccia G., Gabirot M., Westerdahl H., Bonadonna F. Plumage microbiota covaries with the major histocompatibility complex in Blue Petrels. Mol. Ecol. 2019;28:833–846. doi: 10.1111/mec.14993. PubMed DOI

Labrador M.D.M., Doña J., Serrano D., Jovani R. Quantitative interspecific approach to the stylosphere: patterns of bacteria and fungi abundance on passerine bird feathers. Microb. Ecol. 2021;81:1088–1097. doi: 10.1007/s00248-020-01634-2. PubMed DOI

Leclaire S., Czirjak G.A., Hammouda A., Gasparini J. Feather bacterial load shapes the trade-off between preening and immunity in pigeons. BMC Evol. Biol. 2015;15:60. doi: 10.1186/s12862-015-0338-9. PubMed DOI PMC

Horrocks N.P.C., Matson K.D., Shobrak M., Tinbergen J.M., Tieleman B.I. Seasonal patterns in immune indices reflect microbial loads on birds but not microbes in the wider environment. Ecosphere. 2012;3:1–14. doi: 10.1890/es11-00287.1. DOI

Burley N.T., Campos F.A., Chien E., Duarte S., Kirshman N., Phan A., Wilson K.M. Experimentally reduced feather microbial loads improve reproductive performance in captive zebra finches. Ornithology. 2022;139 doi: 10.1093/ornithology/ukac021. DOI

Saag P., Mänd R., Tilgar V., Kilgas P., Mägi M., Rasmann E. Plumage bacterial load is related to species, sex, biometrics and fledging success in co-occurring cavity-breeding passerines. Acta Ornithol. (Warszaw) 2011;46:191–201. doi: 10.3161/000164511x62596. DOI

Leclaire S., Pierret P., Chatelain M., Gasparini J. Feather bacterial load affects plumage condition, iridescent color, and investment in preening in pigeons. Behav. Ecol. 2014;25:1192–1198. doi: 10.1093/beheco/aru109. DOI

Shawkey M.D., Pillai S.R., Hill G.E. Do feather-degrading bacteria affect sexually selected plumage color? Naturwissenschaften. 2009;96:123–128. doi: 10.1007/s00114-008-0462-0. PubMed DOI

Shawkey M.D., Pillai S.R., Hill G.E., Siefferman L.M., Roberts S.R. Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. Am. Nat. 2007;169:S112–S121. doi: 10.1086/510100. PubMed DOI

Azcarate-Garcia M., Gonzalez-Braojos S., Diaz-Lora S., Ruiz-Rodriguez M., Martin-Vivaldi M., Martinez-Bueno M., Moreno J., Jose Soler J. Interspecific variation in deterioration and degradability of avian feathers: the evolutionary role of microorganisms. J. Avian Biol. 2020;51 doi: 10.1111/jav.02320. DOI

Bisson I.A., Marra P.P., Burtt E.H., Sikaroodi M., Gillevet P.M. A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microb. Ecol. 2007;54:65–81. doi: 10.1007/s00248-006-9173-2. PubMed DOI

Goodenough A.E., Stallwood B., Dandy S., Nicholson T.E., Stubbs H., Coker D.G. Like mother like nest: similarity in microbial communities of adult female Pied Flycatchers and their nests. J. Ornithol. 2017;158:233–244. doi: 10.1007/s10336-016-1371-1. DOI

Van Cise A.M., Wade P.R., Goertz C.E.C., Burek-Huntington K., Parsons K.M., Clauss T., Hobbs R.C., Apprill A. Skin microbiome of beluga whales: spatial, temporal, and health-related dynamics. Anim. Microbiome. 2020;2:39. doi: 10.1186/s42523-020-00057-1. PubMed DOI PMC

Meyer E.A., Cramp R.L., Bernal M.H., Franklin C.E. Changes in cutaneous microbial abundance with sloughing: possible implications for infection and disease in amphibians. Dis. Aquat. Org. 2012;101:235–242. doi: 10.3354/dao02523. PubMed DOI

Bisson I.A., Marra P.P., Burtt E.H., Sikaroodi M., Gillevet P.M. Variation in plumage microbiota depends on season and migration. Microb. Ecol. 2009;58:212–220. doi: 10.1007/s00248-009-9490-3. PubMed DOI

Musitelli F., Ambrosini R., Caffi M., Caprioli M., Rubolini D., Saino N., Franzetti A., Gandolfi I. Ecological features of feather microbiota in breeding Common Swifts. Ethol. Ecol. Evol. 2018;30:569–581. doi: 10.1080/03949370.2018.1459865. DOI

Kiat Y., Izhaki I., Sapir N. The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Biol. Rev. Camb. Philos. Soc. 2019;94:700–720. doi: 10.1111/brv.12474. PubMed DOI

Barta Z., McNamara J.M., Houston A.I., Weber T.P., Hedenström A., Feró O. Optimal moult strategies in migratory birds. Philos. Trans. R Soc. Lond. B Biol. Sci. 2008;363:211–229. doi: 10.1098/rstb.2007.2136. PubMed DOI PMC

Wikelski M., Tarlow E.M., Raim A., Diehl R.H., Larkin R.P., Visser G.H. Costs of migration in free-flying songbirds. Nature. 2003;423:704. doi: 10.1038/423704a. PubMed DOI

Buttemer W.A., Bauer S., Emmenegger T., Dimitrov D., Peev S., Hahn S. Moult-related reduction of aerobic scope in passerine birds. J. Comp. Physiol. B. 2019;189:463–470. doi: 10.1007/s00360-019-01213-z. PubMed DOI

Murphy M. In: Energetics and nutrition of molt. Carey C., editor. Springer; 1996. Avian energetics and nutritional ecology.

Viblanc V.A., Mathien A., Saraux C., Viera V.M., Groscolas R. It costs to be clean and fit: energetics of comfort behavior in breeding-fasting penguins. PLoS One. 2011;6 doi: 10.1371/journal.pone.0021110. PubMed DOI PMC

Giraudeau M., Czirják G.Á., Duval C., Bretagnolle V., Eraud C., McGraw K.J., Heeb P. Effect of restricted preen-gland access on maternal self maintenance and reproductive investment in Mallards. PLoS One. 2010;5 doi: 10.1371/journal.pone.0013555. PubMed DOI PMC

Alt G., Saag P., Mägi M., Kisand V., Mänd R. Manipulation of parental effort affects plumage bacterial load in a wild passerine. Oecologia. 2015;178:451–459. doi: 10.1007/s00442-015-3238-1. PubMed DOI

Giraudeau M., Stikeleather R., McKenna J., Hutton P., McGraw K.J. Plumage micro-organisms and preen gland size in an urbanizing context. Sci. Total Environ. 2017;580:425–429. doi: 10.1016/j.scitotenv.2016.09.224. PubMed DOI

Giraudeau M., Czirjak G.A., Duval C., Bretagnolle V., Gutierrez C., Guillon N., Heeb P. Effect of preen oil on plumage bacteria: an experimental test with the Mallard. Behav. Process. 2013;92:1–5. doi: 10.1016/j.beproc.2012.08.001. PubMed DOI

Fulop A., Czirjak G.A., Pap P.L., Vagasi C.I. Feather-degrading bacteria, uropygial gland size and feather quality in House Sparrows Passer domesticus. Ibis. 2016;158:362–370. doi: 10.1111/ibi.12342. DOI

Moller A.P., Czirjak G.A., Heeb P. Feather micro-organisms and uropygial antimicrobial defences in a colonial passerine bird. Funct. Ecol. 2009;23:1097–1102. doi: 10.1111/j.1365-2435.2009.01594.x. DOI

Jacob S., Immer A., Leclaire S., Parthuisot N., Ducamp C., Espinasse G., Heeb P. Uropygial gland size and composition varies according to experimentally modified microbiome in Great Tits. BMC Evol. Biol. 2014;14:134. doi: 10.1186/1471-2148-14-134. PubMed DOI PMC

Magallanes S., Moller A.P., Garcia-Longoria L., de Lope F., Marzal A. Volume and antimicrobial activity of secretions of the uropygial gland are correlated with malaria infection in House Sparrows. Parasite. Vector. 2016;9:232. doi: 10.1186/s13071-016-1512-7. PubMed DOI PMC

Dallas T., Holian L.A., Foster G. What determines parasite species richness across host species? J. Anim. Ecol. 2020;89:1750–1753. doi: 10.1111/1365-2656.13276. PubMed DOI

Kamiya T., O'Dwyer K., Nakagawa S., Poulin R. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol. Rev. 2014;89:123–134. doi: 10.1111/brv.12046. PubMed DOI

Clauss M., Muller K., Fickel J., Streich W.J., Hatt J.M., Sudekum K.H. Macroecology of the host determines microecology of endobionts: protozoal faunas vary with wild ruminant feeding type and body mass. J. Zool. 2011;283:169–185. doi: 10.1111/j.1469-7998.2010.00759.x. DOI

Bell T., Ager D., Song J.I., Newman J.A., Thompson I.P., Lilley A.K., van der Gast C.J. Larger islands house more bacterial taxa. Science. 2005;308:1884. doi: 10.1126/science.1111318. PubMed DOI

Yang F., Liu Z., Zhou J., Guo X., Chen Y. Microbial species-area relationships on the skins of amphibian hosts. Microbiol. Spectr. 2023;11 doi: 10.1128/spectrum.01771-22. PubMed DOI PMC

Shoemaker W.R., Locey K.J., Lennon J.T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 2017;1 doi: 10.1038/s41559-017-0107. PubMed DOI

Matthews T.J., Triantis K.A., Whittaker R.J. Cambridge University Press; 2021. The species–area relationship: theory and application. DOI

Moiron M., Araya-Ajoy Y.G., Mathot K.J., Mouchet A., Dingemanse N.J. Functional relations between body mass and risk-taking behavior in wild Great Tits. Behav. Ecol. 2019;30:617–623. doi: 10.1093/beheco/ary199. DOI

Niemelä P.T., Dingemanse N.J. Meta-analysis reveals weak associations between intrinsic state and personality. Proc. Royal Soc. B-Biol. Sci. 2018;285 doi: 10.1098/rspb.2017.2823. PubMed DOI PMC

Kelleher S.R., Silla A.J., Dingemanse N.J., Byrne P.G. Body size predicts between-individual differences in exploration behaviour in the southern corroboree frog. Anim. Behav. 2017;129:161–170. doi: 10.1016/j.anbehav.2017.05.013. DOI

Florkowski M.R., Yorzinski J.L. Gut microbiome diversity and composition is associated with exploratory behavior in a wild-caught songbird. Anim. Microbiome. 2023;5:8. doi: 10.1186/s42523-023-00227-x. PubMed DOI PMC

Xu L., Xiang M., Zhu W., Zhang M., Chen H., Huang J., Chen Y., Chang Q., Jiang J., Zhu L. The behavior of amphibians shapes their symbiotic microbiomes. mSystems. 2020;5 doi: 10.1128/mSystems.00626-20. PubMed DOI PMC

van Veelen H.P.J., Salles J.F., Tieleman B.I. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME J. 2018;12:1375–1388. doi: 10.1038/s41396-018-0067-3. PubMed DOI PMC

Shawkey M.D., Hussain M.J., Strong A.L., Hagelin J.C., Vollmer A.C., Hill G.E. Use of culture-independent methods to compare bacterial assemblages on feathers of Crested and Least Auklets (Aethia cristatella and Aethia pusilla) with those of passerines. Waterbirds. 2006;29:507–511. doi: 10.1675/1524-4695(2006)29[507:uocmtc]2.0.co;2. DOI

Hanks G.W., Clay N.A., Herrmann M., Nunnally C., Bryant S.R.D., McClain C.R. Isolating the drivers of the species-area relationship in experimental habitat islands. J. Biogeogr. 2024;51:185–198. doi: 10.1111/jbi.14747. DOI

Dial K.P., Greene E., Irschick D.J. Allometry of behavior. Trends Ecol. Evol. 2008;23:394–401. doi: 10.1016/j.tree.2008.03.005. PubMed DOI

Keiser C.N., Wantman T., Rebollar E.A., Harris R.N. Tadpole body size and behaviour alter the social acquisition of a defensive bacterial symbiont. R. Soc. Open Sci. 2019;6 doi: 10.1098/rsos.191080. PubMed DOI PMC

Koprivnikar J., Gibson C.H., Redfern J.C. Infectious personalities: behavioural syndromes and disease risk in larval amphibians. Proc. Biol. Sci. 2012;279:1544–1550. doi: 10.1098/rspb.2011.2156. PubMed DOI PMC

Shankar A., Powers D.R., Dávalos L.M., Graham C.H. The allometry of daily energy expenditure in hummingbirds: an energy budget approach. J. Anim. Ecol. 2020;89:1254–1261. doi: 10.1111/1365-2656.13185. PubMed DOI

Mathot K.J., Dingemanse N.J. Energetics and behavior: unrequited needs and new directions. Trends Ecol. Evol. 2015;30:199–206. doi: 10.1016/j.tree.2015.01.010. PubMed DOI

Kung D., Bigler L., Davis L.R., Gratwicke B., Griffith E., Woodhams D.C. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS One. 2014;9 doi: 10.1371/journal.pone.0087101. PubMed DOI PMC

Rollins-Smith LA W.D. In: Ecoimmunology. Demas G.E., Nelson R.I., editors. Oxford University Press; 2012. Amphibian Immunity: Staying in tune with the environment.

Giraudeau M., Czirják G.Á., Duval C., Guiterrez C., Bretagnolle V., Heeb P. No detected effect of moult on feather bacterial loads in Mallards Anas platyrhynchos. J. Avian Biol. 2010;41:678–680. doi: 10.1111/j.1600-048X.2010.05144.x. DOI

Haribal M., Dhondt A., Rodriguez E. Diversity in chemical compositions of preen gland secretions of tropical birds. Biochem. Systemat. Ecol. 2009;37:80–90. doi: 10.1016/j.bse.2008.12.005. DOI

Whittaker D.J., Soini H.A., Atwell J.W., Hollars C., Novotny M.V., Ketterson E.D. Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behav. Ecol. 2010;21:608–614. doi: 10.1093/beheco/arq033. PubMed DOI PMC

Grieves L.A., Bernards M.A., MacDougall-Shackleton E.A. Wax ester composition of songbird preen oil varies seasonally and differs between sexes, ages, and populations. J. Chem. Ecol. 2019;45:37–45. doi: 10.1007/s10886-018-1033-2. PubMed DOI

Verea C., Vitelli–Flores J., Isturiz T., Rodríguez–Lemoine V., Bosque C. The effect of uropygial gland secretions of Spectacled Thrushes (Turdus nudigenis) on feather degradation and bacterial growth in vitro. J. Ornithol. 2017;158:1035–1043. doi: 10.1007/s10336-017-1461-8. DOI

Alt G., Mägi M., Lodjak J., Mänd R. Experimental study of the effect of preen oil against feather bacteria in passerine birds. Oecologia. 2020;192:723–733. doi: 10.1007/s00442-020-04599-8. PubMed DOI

Bodawatta K.H., Schierbech S.K., Petersen N.R., Sam K., Bos N., Jønsson K.A., Poulsen M. Great Tit (Parus major) uropygial gland microbiomes and their potential defensive roles. Front. Microbiol. 2020;11:1735. doi: 10.3389/fmicb.2020.01735. PubMed DOI PMC

Braun M.S., Sporer F., Zimmermann S., Wink M. Birds, feather-degrading bacteria and preen glands: the antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol. Ecol. 2018;94 doi: 10.1093/femsec/fiy117. PubMed DOI

Czirjak G.A., Pap P.L., Vagasi C.I., Giraudeau M., Muresan C., Mirleau P., Heeb P. Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria. Naturwissenschaften. 2013;100:145–151. doi: 10.1007/s00114-012-1005-2. PubMed DOI

Lucas F.S., Moureau B., Jourdie V., Heeb P. Brood size modifications affect plumage bacterial assemblages of European starlings. Mol. Ecol. 2005;14:639–646. doi: 10.1111/j.1365-294x.2005.02436.x. PubMed DOI

Saag P., Kilgas P., Mägi M., Tilgar V., Mänd R. Inter-annual and body topographic consistency in the plumage bacterial load of Great Tits. J. Field Ornithol. 2012;83:94–100. doi: 10.1111/j.1557-9263.2011.00359.x. DOI

Saag P., Tilgar V., Mänd R., Kilgas P., Mägi M. Plumage bacterial assemblages in a breeding wild passerine: relationships with ecological factors and body condition. Microb. Ecol. 2011;61:740–749. doi: 10.1007/s00248-010-9789-0. PubMed DOI

Vetrovsky T., Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057923. PubMed DOI PMC

Sibley C., Moore B., Jr. New HavenYale University Press; 1990. Distribution and taxonomy of birds of the world.

Saino N., Romano M., Rubolini D., Ambrosini R., Romano A., Caprioli M., Costanzo A., Bazzi G. A trade-off between reproduction and feather growth in the Barn Swallow (Hirundo rustica) PLoS One. 2014;9 doi: 10.1371/journal.pone.0096428. PubMed DOI PMC

Javurkova V.G., Enbody E.D., Kreisinger J., Chmel K., Mrazek J., Karubian J. Plumage iridescence is associated with distinct feather microbiota in a tropical passerine. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-49220-y. PubMed DOI PMC

Moreno-Rueda G. Preen oil and bird fitness: a critical review of the evidence. Biol Rev Camb Philos Soc. 2017;92:2131–2143. doi: 10.1111/brv.12324. PubMed DOI

Demongin L. Identification guide to birds in the hand. Laurent Demongin (privately published); 2016.

Fridolfsson A.K., Ellegren H. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 1999;30:116. doi: 10.2307/3677252. DOI

Jenni L., Winkler R. Moult and ageing of European passerines. 2nd editon. Bloomsbury; 2020.

Shawkey M.D., Mills K.L., Dale C., Hill G.E. Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microb. Ecol. 2005;50:40–47. doi: 10.1007/s00248-004-0089-4. PubMed DOI

Burtt E.H., Ichida J.M. Occurrence of feather-degrading bacilli in the plumage of birds. Auk. 1999;116:364–372. doi: 10.2307/4089371. DOI

Sivaganesan M., Haugland R.A., Chern E.C., Shanks O.C. Improved strategies and optimization of calibration models for real-time PCR absolute quantification. Water Res. 2010;44:4726–4735. doi: 10.1016/j.watres.2010.07.066. PubMed DOI

Sivaganesan M., Seifring S., Varma M., Haugland R.A., Shanks O.C. A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards. BMC Bioinf. 2008;9:120. doi: 10.1186/1471-2105-9-120. PubMed DOI PMC

Polo L., Mañes-Lázaro R., Olmeda I., Cruz-Pio L.E., Medina Á., Ferrer S., Pardo I. Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine. J. Appl. Microbiol. 2017;122:1603–1614. doi: 10.1111/jam.13465. PubMed DOI

Seki S., Kleinhans F.W., Mazur P. Intracellular ice formation in yeast cells vs. cooling rate: predictions from modeling vs. experimental observations by differential scanning calorimetry. Cryobiology. 2009;58:157–165. doi: 10.1016/j.cryobiol.2008.11.011. PubMed DOI PMC

Pehkonen K.S., Roos Y.H., Miao S., Ross R.P., Stanton C. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG) J. Appl. Microbiol. 2008;104:1732–1743. doi: 10.1111/j.1365-2672.2007.03719.x. PubMed DOI

Schliep K.P. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC

Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI

Hadfield J.D. MCMC methods for multi-response Generalized Linear Mixed Models: the MCMCglmm R package. J. Stat. Software. 2010;33:1–22. doi: 10.18637/jss.v033.i02. DOI

Bates D., Machler M., Bolker B.M., Walker S.C. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Software. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.6. DOI

Barton K. 2023. MuMIn: Multi-Model Inference. R package version 1.47.5. DOI

R Core Team . R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2021. https://www.R-project.org/

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...