Host traits rather than migration and molting strategies explain feather bacterial load in Palearctic passerines
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39473972
PubMed Central
PMC11513523
DOI
10.1016/j.isci.2024.111079
PII: S2589-0042(24)02304-6
Knihovny.cz E-resources
- Keywords
- Evolutionary biology, Microbiology, Ornithology,
- Publication type
- Journal Article MeSH
Feather bacterial load affects key avian life-history traits such as plumage condition, innate immunity, and reproductive success. Investigating the interplay between life-history traits and feather microbial load is critical for understanding mechanisms of host-microbiome interactions. We hypothesize that spatiotemporal variation associated with migration and molting, body size affecting colonizable body surface area, and preening intensity could shape feather bacterial load. Integrating 16S rDNA-qPCR and flow cytometry, we examined total and viable bacterial loads in the feathers of 316 individuals of 24 Palearctic passerine species. We found that viable bacterial load in feathers was lower in larger species and higher in residents compared to migrants. In contrast, total bacterial load was not explained by any of the life-history traits but varied considerably among species, sampling sites, and years. By pinpointing main drivers of bacterial loads on avian body surfaces, we identify key mechanisms shaping host-microbiome interactions and open alternative research directions.
3rd Faculty of Medicine Charles University Ruská 87 100 00 Prague Czech Republic
Faculty of Sciences Charles University Department of Ecology Viničná 7 128 44 Prague Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic
See more in PubMed
Pap P.L., Osváth G., Sándor K., Vincze O., Bărbos L., Marton A., Nudds R.L., Vágási C.I. Interspecific variation in the structural properties of flight feathers in birds indicates adaptation to flight requirements and habitat. Funct. Ecol. 2015;29:746–757. doi: 10.1111/1365-2435.12419. DOI
Osvath G., Daubner T., Dyke G., Fuisz T.I., Nord A., Penzes J., Vargancsik D., Vagasi C.I., Vincze O., Pap P.L. How feathered are birds? Environment predicts both the mass and density of body feathers. Funct. Ecol. 2018;32:701–712. doi: 10.1111/1365-2435.13019. DOI
Olsen B.J., Greenberg R., Liu I.A., Felch J.M., Walters J.R. Interactions between sexual and natural selection on the evolution of a plumage badge. Evol. Ecol. 2010;24:731–748. doi: 10.1007/s10682-009-9330-4. DOI
Moller A.P., Cuervo J.J. Speciation and feather ornamentation in birds. Evolution. 1998;52:859–869. doi: 10.2307/2411280. PubMed DOI
Shu W.S., Huang L.N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 2022;20:219–235. doi: 10.1038/s41579-021-00648-y. PubMed DOI
Karimi B., Maron P.A., Boure N.C.P., Bernard N., Gilbert D., Ranjard L. Microbial diversity and ecological networks as indicators of environmental quality. Environ. Chem. Lett. 2017;15:265–281. doi: 10.1007/s10311-017-0614-6. DOI
Javurkova V.G., Kreisinger J., Prochazka P., Pozgayova M., Sevcikova K., Brlik V., Adamik P., Heneberg P., Porkert J. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 2019;13:2363–2376. doi: 10.1038/s41396-019-0438-4. PubMed DOI PMC
van Veelen H.P.J., Falcao Salles J., Tieleman B.I. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5:156. doi: 10.1186/s40168-017-0371-6. PubMed DOI PMC
Jacob S., Sallé L., Zinger L., Chaine A.S., Ducamp C., Boutault L., Russell A.F., Heeb P. Chemical regulation of body feather microbiota in a wild bird. Mol. Ecol. 2018;27:1727–1738. doi: 10.1111/mec.14551. PubMed DOI
Campagna S., Mardon J., Celerier A., Bonadonna F. Potential semiochemical molecules from birds: a practical and comprehensive compilation of the last 20 years studies. Chem. Senses. 2012;37:3–25. doi: 10.1093/chemse/bjr067. PubMed DOI
Mardon J., Saunders S.M., Bonadonna F. From preen secretions to plumage: the chemical trajectory of Blue Petrels’ Halobaena caerulea social scent. J. Avian Biol. 2011;42:29–38. doi: 10.1111/j.1600-048X.2010.05113.x. DOI
Gabirot M., Buatois B., Müller C.T., Bonadonna F. Odour of King Penguin feathers analysed using direct thermal desorption discriminates between individuals but not sexes. Ibis. 2018;160:379–389. doi: 10.1111/ibi.12544. DOI
Leclaire S., Strandh M., Dell’Ariccia G., Gabirot M., Westerdahl H., Bonadonna F. Plumage microbiota covaries with the major histocompatibility complex in Blue Petrels. Mol. Ecol. 2019;28:833–846. doi: 10.1111/mec.14993. PubMed DOI
Labrador M.D.M., Doña J., Serrano D., Jovani R. Quantitative interspecific approach to the stylosphere: patterns of bacteria and fungi abundance on passerine bird feathers. Microb. Ecol. 2021;81:1088–1097. doi: 10.1007/s00248-020-01634-2. PubMed DOI
Leclaire S., Czirjak G.A., Hammouda A., Gasparini J. Feather bacterial load shapes the trade-off between preening and immunity in pigeons. BMC Evol. Biol. 2015;15:60. doi: 10.1186/s12862-015-0338-9. PubMed DOI PMC
Horrocks N.P.C., Matson K.D., Shobrak M., Tinbergen J.M., Tieleman B.I. Seasonal patterns in immune indices reflect microbial loads on birds but not microbes in the wider environment. Ecosphere. 2012;3:1–14. doi: 10.1890/es11-00287.1. DOI
Burley N.T., Campos F.A., Chien E., Duarte S., Kirshman N., Phan A., Wilson K.M. Experimentally reduced feather microbial loads improve reproductive performance in captive zebra finches. Ornithology. 2022;139 doi: 10.1093/ornithology/ukac021. DOI
Saag P., Mänd R., Tilgar V., Kilgas P., Mägi M., Rasmann E. Plumage bacterial load is related to species, sex, biometrics and fledging success in co-occurring cavity-breeding passerines. Acta Ornithol. (Warszaw) 2011;46:191–201. doi: 10.3161/000164511x62596. DOI
Leclaire S., Pierret P., Chatelain M., Gasparini J. Feather bacterial load affects plumage condition, iridescent color, and investment in preening in pigeons. Behav. Ecol. 2014;25:1192–1198. doi: 10.1093/beheco/aru109. DOI
Shawkey M.D., Pillai S.R., Hill G.E. Do feather-degrading bacteria affect sexually selected plumage color? Naturwissenschaften. 2009;96:123–128. doi: 10.1007/s00114-008-0462-0. PubMed DOI
Shawkey M.D., Pillai S.R., Hill G.E., Siefferman L.M., Roberts S.R. Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. Am. Nat. 2007;169:S112–S121. doi: 10.1086/510100. PubMed DOI
Azcarate-Garcia M., Gonzalez-Braojos S., Diaz-Lora S., Ruiz-Rodriguez M., Martin-Vivaldi M., Martinez-Bueno M., Moreno J., Jose Soler J. Interspecific variation in deterioration and degradability of avian feathers: the evolutionary role of microorganisms. J. Avian Biol. 2020;51 doi: 10.1111/jav.02320. DOI
Bisson I.A., Marra P.P., Burtt E.H., Sikaroodi M., Gillevet P.M. A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microb. Ecol. 2007;54:65–81. doi: 10.1007/s00248-006-9173-2. PubMed DOI
Goodenough A.E., Stallwood B., Dandy S., Nicholson T.E., Stubbs H., Coker D.G. Like mother like nest: similarity in microbial communities of adult female Pied Flycatchers and their nests. J. Ornithol. 2017;158:233–244. doi: 10.1007/s10336-016-1371-1. DOI
Van Cise A.M., Wade P.R., Goertz C.E.C., Burek-Huntington K., Parsons K.M., Clauss T., Hobbs R.C., Apprill A. Skin microbiome of beluga whales: spatial, temporal, and health-related dynamics. Anim. Microbiome. 2020;2:39. doi: 10.1186/s42523-020-00057-1. PubMed DOI PMC
Meyer E.A., Cramp R.L., Bernal M.H., Franklin C.E. Changes in cutaneous microbial abundance with sloughing: possible implications for infection and disease in amphibians. Dis. Aquat. Org. 2012;101:235–242. doi: 10.3354/dao02523. PubMed DOI
Bisson I.A., Marra P.P., Burtt E.H., Sikaroodi M., Gillevet P.M. Variation in plumage microbiota depends on season and migration. Microb. Ecol. 2009;58:212–220. doi: 10.1007/s00248-009-9490-3. PubMed DOI
Musitelli F., Ambrosini R., Caffi M., Caprioli M., Rubolini D., Saino N., Franzetti A., Gandolfi I. Ecological features of feather microbiota in breeding Common Swifts. Ethol. Ecol. Evol. 2018;30:569–581. doi: 10.1080/03949370.2018.1459865. DOI
Kiat Y., Izhaki I., Sapir N. The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Biol. Rev. Camb. Philos. Soc. 2019;94:700–720. doi: 10.1111/brv.12474. PubMed DOI
Barta Z., McNamara J.M., Houston A.I., Weber T.P., Hedenström A., Feró O. Optimal moult strategies in migratory birds. Philos. Trans. R Soc. Lond. B Biol. Sci. 2008;363:211–229. doi: 10.1098/rstb.2007.2136. PubMed DOI PMC
Wikelski M., Tarlow E.M., Raim A., Diehl R.H., Larkin R.P., Visser G.H. Costs of migration in free-flying songbirds. Nature. 2003;423:704. doi: 10.1038/423704a. PubMed DOI
Buttemer W.A., Bauer S., Emmenegger T., Dimitrov D., Peev S., Hahn S. Moult-related reduction of aerobic scope in passerine birds. J. Comp. Physiol. B. 2019;189:463–470. doi: 10.1007/s00360-019-01213-z. PubMed DOI
Murphy M. In: Energetics and nutrition of molt. Carey C., editor. Springer; 1996. Avian energetics and nutritional ecology.
Viblanc V.A., Mathien A., Saraux C., Viera V.M., Groscolas R. It costs to be clean and fit: energetics of comfort behavior in breeding-fasting penguins. PLoS One. 2011;6 doi: 10.1371/journal.pone.0021110. PubMed DOI PMC
Giraudeau M., Czirják G.Á., Duval C., Bretagnolle V., Eraud C., McGraw K.J., Heeb P. Effect of restricted preen-gland access on maternal self maintenance and reproductive investment in Mallards. PLoS One. 2010;5 doi: 10.1371/journal.pone.0013555. PubMed DOI PMC
Alt G., Saag P., Mägi M., Kisand V., Mänd R. Manipulation of parental effort affects plumage bacterial load in a wild passerine. Oecologia. 2015;178:451–459. doi: 10.1007/s00442-015-3238-1. PubMed DOI
Giraudeau M., Stikeleather R., McKenna J., Hutton P., McGraw K.J. Plumage micro-organisms and preen gland size in an urbanizing context. Sci. Total Environ. 2017;580:425–429. doi: 10.1016/j.scitotenv.2016.09.224. PubMed DOI
Giraudeau M., Czirjak G.A., Duval C., Bretagnolle V., Gutierrez C., Guillon N., Heeb P. Effect of preen oil on plumage bacteria: an experimental test with the Mallard. Behav. Process. 2013;92:1–5. doi: 10.1016/j.beproc.2012.08.001. PubMed DOI
Fulop A., Czirjak G.A., Pap P.L., Vagasi C.I. Feather-degrading bacteria, uropygial gland size and feather quality in House Sparrows Passer domesticus. Ibis. 2016;158:362–370. doi: 10.1111/ibi.12342. DOI
Moller A.P., Czirjak G.A., Heeb P. Feather micro-organisms and uropygial antimicrobial defences in a colonial passerine bird. Funct. Ecol. 2009;23:1097–1102. doi: 10.1111/j.1365-2435.2009.01594.x. DOI
Jacob S., Immer A., Leclaire S., Parthuisot N., Ducamp C., Espinasse G., Heeb P. Uropygial gland size and composition varies according to experimentally modified microbiome in Great Tits. BMC Evol. Biol. 2014;14:134. doi: 10.1186/1471-2148-14-134. PubMed DOI PMC
Magallanes S., Moller A.P., Garcia-Longoria L., de Lope F., Marzal A. Volume and antimicrobial activity of secretions of the uropygial gland are correlated with malaria infection in House Sparrows. Parasite. Vector. 2016;9:232. doi: 10.1186/s13071-016-1512-7. PubMed DOI PMC
Dallas T., Holian L.A., Foster G. What determines parasite species richness across host species? J. Anim. Ecol. 2020;89:1750–1753. doi: 10.1111/1365-2656.13276. PubMed DOI
Kamiya T., O'Dwyer K., Nakagawa S., Poulin R. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol. Rev. 2014;89:123–134. doi: 10.1111/brv.12046. PubMed DOI
Clauss M., Muller K., Fickel J., Streich W.J., Hatt J.M., Sudekum K.H. Macroecology of the host determines microecology of endobionts: protozoal faunas vary with wild ruminant feeding type and body mass. J. Zool. 2011;283:169–185. doi: 10.1111/j.1469-7998.2010.00759.x. DOI
Bell T., Ager D., Song J.I., Newman J.A., Thompson I.P., Lilley A.K., van der Gast C.J. Larger islands house more bacterial taxa. Science. 2005;308:1884. doi: 10.1126/science.1111318. PubMed DOI
Yang F., Liu Z., Zhou J., Guo X., Chen Y. Microbial species-area relationships on the skins of amphibian hosts. Microbiol. Spectr. 2023;11 doi: 10.1128/spectrum.01771-22. PubMed DOI PMC
Shoemaker W.R., Locey K.J., Lennon J.T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 2017;1 doi: 10.1038/s41559-017-0107. PubMed DOI
Matthews T.J., Triantis K.A., Whittaker R.J. Cambridge University Press; 2021. The species–area relationship: theory and application. DOI
Moiron M., Araya-Ajoy Y.G., Mathot K.J., Mouchet A., Dingemanse N.J. Functional relations between body mass and risk-taking behavior in wild Great Tits. Behav. Ecol. 2019;30:617–623. doi: 10.1093/beheco/ary199. DOI
Niemelä P.T., Dingemanse N.J. Meta-analysis reveals weak associations between intrinsic state and personality. Proc. Royal Soc. B-Biol. Sci. 2018;285 doi: 10.1098/rspb.2017.2823. PubMed DOI PMC
Kelleher S.R., Silla A.J., Dingemanse N.J., Byrne P.G. Body size predicts between-individual differences in exploration behaviour in the southern corroboree frog. Anim. Behav. 2017;129:161–170. doi: 10.1016/j.anbehav.2017.05.013. DOI
Florkowski M.R., Yorzinski J.L. Gut microbiome diversity and composition is associated with exploratory behavior in a wild-caught songbird. Anim. Microbiome. 2023;5:8. doi: 10.1186/s42523-023-00227-x. PubMed DOI PMC
Xu L., Xiang M., Zhu W., Zhang M., Chen H., Huang J., Chen Y., Chang Q., Jiang J., Zhu L. The behavior of amphibians shapes their symbiotic microbiomes. mSystems. 2020;5 doi: 10.1128/mSystems.00626-20. PubMed DOI PMC
van Veelen H.P.J., Salles J.F., Tieleman B.I. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME J. 2018;12:1375–1388. doi: 10.1038/s41396-018-0067-3. PubMed DOI PMC
Shawkey M.D., Hussain M.J., Strong A.L., Hagelin J.C., Vollmer A.C., Hill G.E. Use of culture-independent methods to compare bacterial assemblages on feathers of Crested and Least Auklets (Aethia cristatella and Aethia pusilla) with those of passerines. Waterbirds. 2006;29:507–511. doi: 10.1675/1524-4695(2006)29[507:uocmtc]2.0.co;2. DOI
Hanks G.W., Clay N.A., Herrmann M., Nunnally C., Bryant S.R.D., McClain C.R. Isolating the drivers of the species-area relationship in experimental habitat islands. J. Biogeogr. 2024;51:185–198. doi: 10.1111/jbi.14747. DOI
Dial K.P., Greene E., Irschick D.J. Allometry of behavior. Trends Ecol. Evol. 2008;23:394–401. doi: 10.1016/j.tree.2008.03.005. PubMed DOI
Keiser C.N., Wantman T., Rebollar E.A., Harris R.N. Tadpole body size and behaviour alter the social acquisition of a defensive bacterial symbiont. R. Soc. Open Sci. 2019;6 doi: 10.1098/rsos.191080. PubMed DOI PMC
Koprivnikar J., Gibson C.H., Redfern J.C. Infectious personalities: behavioural syndromes and disease risk in larval amphibians. Proc. Biol. Sci. 2012;279:1544–1550. doi: 10.1098/rspb.2011.2156. PubMed DOI PMC
Shankar A., Powers D.R., Dávalos L.M., Graham C.H. The allometry of daily energy expenditure in hummingbirds: an energy budget approach. J. Anim. Ecol. 2020;89:1254–1261. doi: 10.1111/1365-2656.13185. PubMed DOI
Mathot K.J., Dingemanse N.J. Energetics and behavior: unrequited needs and new directions. Trends Ecol. Evol. 2015;30:199–206. doi: 10.1016/j.tree.2015.01.010. PubMed DOI
Kung D., Bigler L., Davis L.R., Gratwicke B., Griffith E., Woodhams D.C. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS One. 2014;9 doi: 10.1371/journal.pone.0087101. PubMed DOI PMC
Rollins-Smith LA W.D. In: Ecoimmunology. Demas G.E., Nelson R.I., editors. Oxford University Press; 2012. Amphibian Immunity: Staying in tune with the environment.
Giraudeau M., Czirják G.Á., Duval C., Guiterrez C., Bretagnolle V., Heeb P. No detected effect of moult on feather bacterial loads in Mallards Anas platyrhynchos. J. Avian Biol. 2010;41:678–680. doi: 10.1111/j.1600-048X.2010.05144.x. DOI
Haribal M., Dhondt A., Rodriguez E. Diversity in chemical compositions of preen gland secretions of tropical birds. Biochem. Systemat. Ecol. 2009;37:80–90. doi: 10.1016/j.bse.2008.12.005. DOI
Whittaker D.J., Soini H.A., Atwell J.W., Hollars C., Novotny M.V., Ketterson E.D. Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behav. Ecol. 2010;21:608–614. doi: 10.1093/beheco/arq033. PubMed DOI PMC
Grieves L.A., Bernards M.A., MacDougall-Shackleton E.A. Wax ester composition of songbird preen oil varies seasonally and differs between sexes, ages, and populations. J. Chem. Ecol. 2019;45:37–45. doi: 10.1007/s10886-018-1033-2. PubMed DOI
Verea C., Vitelli–Flores J., Isturiz T., Rodríguez–Lemoine V., Bosque C. The effect of uropygial gland secretions of Spectacled Thrushes (Turdus nudigenis) on feather degradation and bacterial growth in vitro. J. Ornithol. 2017;158:1035–1043. doi: 10.1007/s10336-017-1461-8. DOI
Alt G., Mägi M., Lodjak J., Mänd R. Experimental study of the effect of preen oil against feather bacteria in passerine birds. Oecologia. 2020;192:723–733. doi: 10.1007/s00442-020-04599-8. PubMed DOI
Bodawatta K.H., Schierbech S.K., Petersen N.R., Sam K., Bos N., Jønsson K.A., Poulsen M. Great Tit (Parus major) uropygial gland microbiomes and their potential defensive roles. Front. Microbiol. 2020;11:1735. doi: 10.3389/fmicb.2020.01735. PubMed DOI PMC
Braun M.S., Sporer F., Zimmermann S., Wink M. Birds, feather-degrading bacteria and preen glands: the antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol. Ecol. 2018;94 doi: 10.1093/femsec/fiy117. PubMed DOI
Czirjak G.A., Pap P.L., Vagasi C.I., Giraudeau M., Muresan C., Mirleau P., Heeb P. Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria. Naturwissenschaften. 2013;100:145–151. doi: 10.1007/s00114-012-1005-2. PubMed DOI
Lucas F.S., Moureau B., Jourdie V., Heeb P. Brood size modifications affect plumage bacterial assemblages of European starlings. Mol. Ecol. 2005;14:639–646. doi: 10.1111/j.1365-294x.2005.02436.x. PubMed DOI
Saag P., Kilgas P., Mägi M., Tilgar V., Mänd R. Inter-annual and body topographic consistency in the plumage bacterial load of Great Tits. J. Field Ornithol. 2012;83:94–100. doi: 10.1111/j.1557-9263.2011.00359.x. DOI
Saag P., Tilgar V., Mänd R., Kilgas P., Mägi M. Plumage bacterial assemblages in a breeding wild passerine: relationships with ecological factors and body condition. Microb. Ecol. 2011;61:740–749. doi: 10.1007/s00248-010-9789-0. PubMed DOI
Vetrovsky T., Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057923. PubMed DOI PMC
Sibley C., Moore B., Jr. New HavenYale University Press; 1990. Distribution and taxonomy of birds of the world.
Saino N., Romano M., Rubolini D., Ambrosini R., Romano A., Caprioli M., Costanzo A., Bazzi G. A trade-off between reproduction and feather growth in the Barn Swallow (Hirundo rustica) PLoS One. 2014;9 doi: 10.1371/journal.pone.0096428. PubMed DOI PMC
Javurkova V.G., Enbody E.D., Kreisinger J., Chmel K., Mrazek J., Karubian J. Plumage iridescence is associated with distinct feather microbiota in a tropical passerine. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-49220-y. PubMed DOI PMC
Moreno-Rueda G. Preen oil and bird fitness: a critical review of the evidence. Biol Rev Camb Philos Soc. 2017;92:2131–2143. doi: 10.1111/brv.12324. PubMed DOI
Demongin L. Identification guide to birds in the hand. Laurent Demongin (privately published); 2016.
Fridolfsson A.K., Ellegren H. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 1999;30:116. doi: 10.2307/3677252. DOI
Jenni L., Winkler R. Moult and ageing of European passerines. 2nd editon. Bloomsbury; 2020.
Shawkey M.D., Mills K.L., Dale C., Hill G.E. Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microb. Ecol. 2005;50:40–47. doi: 10.1007/s00248-004-0089-4. PubMed DOI
Burtt E.H., Ichida J.M. Occurrence of feather-degrading bacilli in the plumage of birds. Auk. 1999;116:364–372. doi: 10.2307/4089371. DOI
Sivaganesan M., Haugland R.A., Chern E.C., Shanks O.C. Improved strategies and optimization of calibration models for real-time PCR absolute quantification. Water Res. 2010;44:4726–4735. doi: 10.1016/j.watres.2010.07.066. PubMed DOI
Sivaganesan M., Seifring S., Varma M., Haugland R.A., Shanks O.C. A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards. BMC Bioinf. 2008;9:120. doi: 10.1186/1471-2105-9-120. PubMed DOI PMC
Polo L., Mañes-Lázaro R., Olmeda I., Cruz-Pio L.E., Medina Á., Ferrer S., Pardo I. Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine. J. Appl. Microbiol. 2017;122:1603–1614. doi: 10.1111/jam.13465. PubMed DOI
Seki S., Kleinhans F.W., Mazur P. Intracellular ice formation in yeast cells vs. cooling rate: predictions from modeling vs. experimental observations by differential scanning calorimetry. Cryobiology. 2009;58:157–165. doi: 10.1016/j.cryobiol.2008.11.011. PubMed DOI PMC
Pehkonen K.S., Roos Y.H., Miao S., Ross R.P., Stanton C. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG) J. Appl. Microbiol. 2008;104:1732–1743. doi: 10.1111/j.1365-2672.2007.03719.x. PubMed DOI
Schliep K.P. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC
Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Hadfield J.D. MCMC methods for multi-response Generalized Linear Mixed Models: the MCMCglmm R package. J. Stat. Software. 2010;33:1–22. doi: 10.18637/jss.v033.i02. DOI
Bates D., Machler M., Bolker B.M., Walker S.C. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Software. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.6. DOI
Barton K. 2023. MuMIn: Multi-Model Inference. R package version 1.47.5. DOI
R Core Team . R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2021. https://www.R-project.org/