Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, randomizované kontrolované studie, práce podpořená grantem
PubMed
27113605
PubMed Central
PMC5013123
DOI
10.1136/jnnp-2015-312601
PII: jnnp-2015-312601
Knihovny.cz E-zdroje
- MeSH
- akvaporin 4 krev imunologie MeSH
- autoprotilátky krev imunologie MeSH
- ELISA metody MeSH
- imunohistochemie metody MeSH
- lidé MeSH
- neuromyelitis optica krev imunologie MeSH
- senzitivita a specificita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- akvaporin 4 MeSH
- autoprotilátky MeSH
OBJECTIVE: Antibodies to cell surface central nervous system proteins help to diagnose conditions which often respond to immunotherapies. The assessment of antibody assays needs to reflect their clinical utility. We report the results of a multicentre study of aquaporin (AQP) 4 antibody (AQP4-Ab) assays in neuromyelitis optica spectrum disorders (NMOSD). METHODS: Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4), immunohistochemistry (n=3) and ELISA (n=1). RESULTS: Results of tests on 92 controls identified 12assays as highly specific (0-1 false-positive results). 32 samples from 50 (64%) NMO sera and 34 from 51 (67%) NMOSD sera were positive on at least two of the 12 highly specific assays, leaving 35 patients with seronegative NMO/spectrum disorder (SD). On the basis of a combination of clinical phenotype and the highly specific assays, 66 AQP4-Ab seropositive samples were used to establish the sensitivities (51.5-100%) of all 21 assays. The specificities (85.8-100%) were based on 92 control samples and 35 seronegative NMO/SD patient samples. CONCLUSIONS: The cell-based assays were most sensitive and specific overall, but immunohistochemistry or flow cytometry could be equally accurate in specialist centres. Since patients with AQP4-Ab negative NMO/SD require different management, the use of both appropriate control samples and defined seronegative NMOSD samples is essential to evaluate these assays in a clinically meaningful way. The process described here can be applied to the evaluation of other antibody assays in the newly evolving field of autoimmune neurology.
Clinical Department of Neurology Medical University of Innsbruck Innsbruck Austria
Department of Clinical Immunology Odense University Hospital Odense Denmark
Department of Immunology and Biotechnology University of Pécs Pécs Hungary
Department of Immunology Istanbul University Institute of Experimental Medicine Istanbul Turkey
Department of Neurology Azienda ULSS 9 Treviso Treviso Italy
Department of Neurology MS Centre ErasMS Erasmus MC Rotterdam The Netherlands
Department of Neurology University Hospital of Schleswig Holstein Campus Lübeck Lübeck Germany
Institute for Quality Assurance Lübeck Germany
Klinikum rechts der Isar der TU München Klinik für Neurologie Munich Germany
Laboratory for CSF and Neuroimmunology Topelex Ltd Prague Czech Republic
Medical Faculty Department of Neurology Heinrich Heine University Düsseldorf Düsseldorf Germany
Molecular Neuroimmunology Group Department of Neurology University of Heidelberg Germany
NeuroCure Clinical Research Center Charité Universitätsmedizin Berlin Berlin Germany
Neurology Department Istanbul University Cerrahpasa Medical School Istanbul Turkey
Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
Zobrazit více v PubMed
Lennon VA, Kryzer TJ, Pittock SJ, et al. . IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005;202:473–7. 10.1084/jem.20050304 PubMed DOI PMC
Lennon VA, Wingerchuk DM, Kryzer TJ, et al. . A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364:2106–12. 10.1016/S0140-6736(04)17551-X PubMed DOI
Dalmau J, Tuzun E, Wu HY, et al. . Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007;61:25–36. 10.1002/ana.21050 PubMed DOI PMC
Florance NR, Davis RL, Lam C, et al. . Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009;66:11–18. 10.1002/ana.21756 PubMed DOI PMC
Hutchinson M, Waters P, McHugh J, et al. . Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 2008;71:1291–2. 10.1212/01.wnl.0000327606.50322.f0 PubMed DOI
Lai M, Hughes EG, Peng X, et al. . AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009;65:424–34. 10.1002/ana.21589 PubMed DOI PMC
Lancaster E, Lai M, Peng X, et al. . Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010;9:67–76. 10.1016/S1474-4422(09)70324-2 PubMed DOI PMC
Lai M, Huijbers MG, Lancaster E, et al. . Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776–85. 10.1016/S1474-4422(10)70137-X PubMed DOI PMC
Irani SR, Alexander S, Waters P, et al. . Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain 2010;133:2734–48. 10.1093/brain/awq213 PubMed DOI PMC
Lancaster E, Huijbers MGM, Bar V, et al. . Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol 2011;69:303–11. 10.1002/ana.22297 PubMed DOI PMC
Petit-Pedrol M, Armangue T, Peng X, et al. . Encephalitis with refractory seizures, status epilepticus, and antibodies to GABAA receptor: a case series, characterisation of the antigen and analysis of the effects of antibodies. Lancet Neurol 2014;13:276–86. 10.1016/S1474-4422(13)70299-0 PubMed DOI PMC
Pettingill P, Kramer HB, Coebergh JA, et al. . Antibodies to GABAA receptor α1 and γ2 subunits: clinical and serologic characterization. Neurology 2015;84:1233–41. 10.1212/WNL.0000000000001326 PubMed DOI PMC
Graus F, Saiz A, Dalmau J. Antibodies and neuronal autoimmune disorders of the CNS. J Neurol 2010;257:509–17. 10.1007/s00415-009-5431-9 PubMed DOI
Vincent A, Bien CG, Irani SR, et al. . Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 2011;10:759–72. 10.1016/S1474-4422(11)70096-5 PubMed DOI
Dalmau J, Rosenfeld MR. Autoimmune encephalitis update. Neuro Oncol 2014;16:771–8. 10.1093/neuonc/nou030 PubMed DOI PMC
Wingerchuk DM, Lennon VA, Pittock SJ, et al. . Revised diagnostic criteria for neuromyelitis optica. Neurology 2006;66:1485–9. 10.1212/01.wnl.0000216139.44259.74 PubMed DOI
Waters PJ, Pittock SJ, Bennett JL, et al. . Evaluation of aquaporin-4 antibody assays. Clin Exp Neuroimunol 2014;5:290–303. 10.1111/cen3.12107 PubMed DOI PMC
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol 2013;23:661–83. 10.1111/bpa.12084 PubMed DOI PMC
Polman CH, Reingold SC, Edan G, et al. . Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005;58:840–6. 10.1002/ana.20703 PubMed DOI
Morris KA, Waters P, Woodhall MR, et al. . A 41-year-old woman with acute weakness and encephalopathy associated with MOG antibodies. Neurol Neuroimmunol Neuroinflamm 2015;2:e88 10.1212/NXI.0000000000000088 PubMed DOI PMC
Leite MI, Coutinho E, Lana-Peixoto M, et al. . Myasthenia gravis and neuromyelitis optica spectrum disorder: a multicentre study of 16 patients. Neurology 2012;78:1601–7. 10.1212/WNL.0b013e31825644ff PubMed DOI PMC
Matiello M, Lennon VA, Jacob A, et al. . NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology 2008;70:2197–200. 10.1212/01.wnl.0000303817.82134.da PubMed DOI
Weinshenker BG, Wingerchuk DM, Vukusic S, et al. . Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann Neurol 2006;59:566–9. 10.1002/ana.20770 PubMed DOI
Waters P, Woodhall M, O'Connor KC, et al. . MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm 2015;2:e89 10.1212/NXI.0000000000000089 PubMed DOI PMC
Takahashi T, Fujihara K, Nakashima I, et al. . Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 2007;130:1235–43. 10.1093/brain/awm062 PubMed DOI
Waters PJ, McKeon A, Leite MI, et al. . Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology 2012;78:665–71; discussion 669 10.1212/WNL.0b013e318248dec1 PubMed DOI PMC
Höftberger R, Sabater L, Marignier R, et al. . An optimized immunohistochemistry technique improves NMO-IgG detection: study comparison with cell-based assay. PLoS ONE 2013;8:e79083 10.1371/journal.pone.0079083 PubMed DOI PMC
Wingerchuk DM, Banwell B, Bennett JL, et al. . International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015;85:1–13. 10.1212/WNL.0000000000001729 PubMed DOI PMC
Sato DK, Callegaro D, Lana-Peixoto MA, et al. . Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 2014;82:474–81. 10.1212/WNL.0000000000000101 PubMed DOI PMC
Titulaer MJ, McCracken L, Gabilondo I, et al. . Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157–65. 10.1016/S1474-4422(12)70310-1 PubMed DOI PMC