Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
Grant support
MC_U120061454
Medical Research Council - United Kingdom
R01 AA013162
NIAAA NIH HHS - United States
R24 AA013162
NIAAA NIH HHS - United States
U01 AA016663
NIAAA NIH HHS - United States
PubMed
27224245
PubMed Central
PMC4880288
DOI
10.1371/journal.pone.0155832
PII: PONE-D-16-06210
Knihovny.cz E-resources
- MeSH
- Genotyping Techniques MeSH
- Encephalitis, Herpes Simplex genetics MeSH
- Polymorphism, Single Nucleotide * MeSH
- Rats MeSH
- Quantitative Trait, Heritable * MeSH
- Humans MeSH
- Herpesvirus 1, Human * MeSH
- Rats, Inbred SHR MeSH
- Chromosomes, Mammalian genetics MeSH
- von Willebrand Factor genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- von Willebrand Factor MeSH
Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89-174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.
Department of Clinical Virology University of Gothenburg SE 413 46 Gothenburg Sweden
Division of Medicine Imperial College London London United Kingdom
Institute of Physiology Academy of Sciences of the Czech Republic Prague Czech Republic
Max Delbruck Center for Molecular Medicine Berlin Buch Berlin Germany
See more in PubMed
Hjalmarsson A, Granath F, Forsgren M, Brytting M, Blomqvist P, Skoldenberg B. Prognostic value of intrathecal antibody production and DNA viral load in cerebrospinal fluid of patients with herpes simplex encephalitis. J Neurol. 2009;256(8):1243–51. Epub 2009/04/09. 10.1007/s00415-009-5106-6 . PubMed DOI
Aurelius E, Johansson B, Skoldenberg B, Forsgren M. Encephalitis in immunocompetent patients due to herpes simplex virus type 1 or 2 as determined by type-specific polymerase chain reaction and antibody assays of cerebrospinal fluid. J Med Virol. 1993;39(3):179–86. Epub 1993/03/01. . PubMed
Kennedy PG, Chaudhuri A. Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry. 2002;73(3):237–8. Epub 2002/08/20. PubMed PMC
Whitley RJ. Viral encephalitis. The New England journal of medicine. 1990;323(4):242–50. Epub 1990/07/26. 10.1056/NEJM199007263230406 . PubMed DOI
Sköldenberg B, Aurelius E, Hjalmarsson A, Sabri F, Forsgren M, Andersson B, et al. Incidence and pathogenesis of clinical relapse after herpes simplex encephalitis in adults. J Neurol. 2006;253(2):163–70. . PubMed
Studahl M, Lindquist L, Eriksson BM, Gunther G, Bengner M, Franzen-Rohl E, et al. Acute viral infections of the central nervous system in immunocompetent adults: diagnosis and management. Drugs. 2013;73(2):131–58. Epub 2013/02/05. 10.1007/s40265-013-0007-5 . PubMed DOI
Bereczky-Veress B, Lidman O, Sabri F, Bednar I, Granath F, Bergstrom T, et al. Host strain-dependent difference in susceptibility in a rat model of herpes simplex type 1 encephalitis. J Neurovirol. 2008;14(2):102–18. Epub 2008/04/30. 792702050 [pii] 10.1080/13550280701883832 . PubMed DOI
Bereczky-Veress B, Abdelmagid N, Piehl F, Bergstrom T, Olsson T, Skoldenberg B, et al. Influence of Perineurial Cells and Toll-Like Receptors 2 and 9 on Herpes simplex Type 1 Entry to the Central Nervous System in Rat Encephalitis. PLoS One. 2010;5(8). Epub 2010/09/02. e12350 [pii] 10.1371/journal.pone.0012350 PubMed DOI PMC
Abdelmagid N, Bereczky-Veress B, Guerreiro-Cacais AO, Bergman P, Luhr KM, Bergstrom T, et al. The Calcitonin Receptor Gene Is a Candidate for Regulation of Susceptibility to Herpes simplex Type 1 Neuronal Infection Leading to Encephalitis in Rat. PLoS pathogens. 2012;8(6):e1002753 Epub 2012/07/05. 10.1371/journal.ppat.1002753 PubMed DOI PMC
Pravenec M, Klir P, Kren V, Zicha J, Kunes J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens. 1989;7(3):217–21. Epub 1989/03/01. . PubMed
Williams RW, Gu J, Qi S, Lu L. The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol. 2001;2(11):RESEARCH0046. Epub 2001/12/12. PubMed PMC
Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet. 2005;37(3):243–53. Epub 2005/02/16. ng1522 [pii] 10.1038/ng1522 . PubMed DOI
Heinig M, Petretto E, Wallace C, Bottolo L, Rotival M, Lu H, et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature. 2010;467(7314):460–4. Epub 2010/09/10. 10.1038/nature09386 . PubMed DOI PMC
Mueller M, Goel A, Thimma M, Dickens NJ, Aitman TJ, Mangion J. eQTL Explorer: integrated mining of combined genetic linkage and expression experiments. Bioinformatics. 2006;22(4):509–11. Epub 2005/12/17. btk007 [pii] 10.1093/bioinformatics/btk007 . PubMed DOI
Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, et al. Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol. 2009;7:70 Epub 2009/10/31. 1741-7007-7-70 [pii] 10.1186/1741-7007-7-70 PubMed DOI PMC
Bhave SV, Hornbaker C, Phang TL, Saba L, Lapadat R, Kechris K, et al. The PhenoGen informatics website: tools for analyses of complex traits. BMC Genet. 2007;8:59 Epub 2007/09/01. 10.1186/1471-2156-8-59 PubMed DOI PMC
Atanur SS, Birol I, Guryev V, Hirst M, Hummel O, Morrissey C, et al. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. Genome Res. 2010. Epub 2010/05/01. gr.103499.109 [pii] 10.1101/gr.103499.109 . PubMed DOI PMC
Sköldenberg B, Forsgren M, Alestig K, Bergström T, Burman L, Dahlqvist E, et al. Acyclovir versus vidarabine in herpes simplex encephalitis. Randomised multicentre study in consecutive Swedish patients. Lancet. 1984;2(8405):707–11. . PubMed
Aurelius E, Johansson B, Skoldenberg B, Staland A, Forsgren M. Rapid diagnosis of herpes simplex encephalitis by nested polymerase chain reaction assay of cerebrospinal fluid. Lancet. 1991;337(8735):189–92. Epub 1991/01/26. . PubMed
Hedstrom AK, Baarnhielm M, Olsson T, Alfredsson L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology. 2009;73(9):696–701. Epub 2009/09/02. 10.1212/WNL.0b013e3181b59c40 . PubMed DOI
Ekelund E, Saaf A, Tengvall-Linder M, Melen E, Link J, Barker J, et al. Elevated expression and genetic association links the SOCS3 gene to atopic dermatitis. Am J Hum Genet. 2006;78(6):1060–5. Epub 2006/05/11. 10.1086/504272 PubMed DOI PMC
Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–9. Epub 2011/08/13. 10.1038/nature10251 PubMed DOI PMC
Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, et al. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2006;2(10):e172 Epub 2006/10/24. 06-PLGE-RA-0248R2 [pii] 10.1371/journal.pgen.0020172 PubMed DOI PMC
Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424. Epub 1998/10/06. 10.1146/annurev.biochem.67.1.395 . PubMed DOI
Suidan GL, Brill A, De Meyer SF, Voorhees JR, Cifuni SM, Cabral JE, et al. Endothelial Von Willebrand factor promotes blood-brain barrier flexibility and provides protection from hypoxia and seizures in mice. Arterioscler Thromb Vasc Biol. 2013;33(9):2112–20. 10.1161/ATVBAHA.113.301362 PubMed DOI PMC
Sancho-Shimizu V, Zhang SY, Abel L, Tardieu M, Rozenberg F, Jouanguy E, et al. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr Opin Allergy Clin Immunol. 2007;7(6):495–505. Epub 2007/11/09. PubMed
Halford WP, Balliet JW, Gebhardt BM. Re-evaluating natural resistance to herpes simplex virus type 1. J Virol. 2004;78(18):10086–95. . PubMed PMC
Kastrukoff LF, Lau AS, Takei F, Smyth MJ, Jones CM, Clarke SR, et al. Redundancy in the immune system restricts the spread of HSV-1 in the central nervous system (CNS) of C57BL/6 mice. Virology. 2010. Epub 2010/03/05. S0042-6822(10)00113-3 [pii] 10.1016/j.virol.2010.02.013 . PubMed DOI
Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K, et al. Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science. 2006;314:308–12. . PubMed
Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–7. . PubMed
Pasieka TJ, Cilloniz C, Carter VS, Rosato P, Katze MG, Leib DA. Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection. J Virol. 2011;85(24):12972–81. 10.1128/JVI.06032-11 PubMed DOI PMC
Wickham S, Lu B, Ash J, Carr DJ. Chemokine receptor deficiency is associated with increased chemokine expression in the peripheral and central nervous systems and increased resistance to herpetic encephalitis. J Neuroimmunol. 2005;162(1–2):51–9. Epub 2005/04/19. 10.1016/j.jneuroim.2005.01.001 . PubMed DOI
Zhou Y, Lu ZN, Guo YJ, Mei YW. Favorable effects of MMP-9 knockdown in murine herpes simplex encephalitis using small interfering RNA. Neurol Res. 2010;32(8):801–9. 10.1179/016164110X12644252260556 . PubMed DOI
Sheridan BS, Cherpes TL, Urban J, Kalinski P, Hendricks RL. Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J Virol. 2009;83(5):2237–45. 10.1128/JVI.01699-08 PubMed DOI PMC
Pereira RA, Scalzo A, Simmons A. Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J Immunol. 2001;166(10):5869–73. Epub 2001/05/09. . PubMed
Lundberg P, Welander P, Openshaw H, Nalbandian C, Edwards C, Moldawer L, et al. A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J Virol. 2003;77(21):11661–73. Epub 2003/10/15. PubMed PMC
Kastrukoff LF, Lau AS, Takei F, Carbone FR, Scalzo AA. A NK complex-linked locus restricts the spread of herpes simplex virus type 1 in the brains of C57BL/6 mice. Immunol Cell Biol. 2015. Epub 2015/05/15. 10.1038/icb.2015.54 . PubMed DOI
Rat Genome S, Mapping C, Baud A, Hermsen R, Guryev V, Stridh P, et al. Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nat Genet. 2013;45(7):767–75.; PubMed Central PMCID: PMC3821058. PubMed PMC
Noubade R, del Rio R, McElvany B, Zachary JF, Millward JM, Wagner DD, et al. von-Willebrand factor influences blood brain barrier permeability and brain inflammation in experimental allergic encephalomyelitis. Am J Pathol. 2008;173(3):892–900. Epub 2008/08/09. ajpath.2008.080001 [pii] 10.2353/ajpath.2008.080001 PubMed DOI PMC
Roe K, Orillo B, Verma S. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model. PLoS One. 2014;9(7):e102598 10.1371/journal.pone.0102598 PubMed DOI PMC
Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio. 2014;5(5):e01476–14. 10.1128/mBio.01476-14 PubMed DOI PMC
Li F, Wang Y, Yu L, Cao S, Wang K, Yuan J, et al. Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection. J Virol. 2015;89(10):5602–14. 10.1128/JVI.00143-15 PubMed DOI PMC
Chai Q, He WQ, Zhou M, Lu H, Fu ZF. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol. 2014;88(9):4698–710. 10.1128/JVI.03149-13 PubMed DOI PMC
Davidson DC, Hirschman MP, Sun A, Singh MV, Kasischke K, Maggirwar SB. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders. PLoS One. 2012;7(12):e51793 10.1371/journal.pone.0051793 PubMed DOI PMC
Hollestelle MJ, Donkor C, Mantey EA, Chakravorty SJ, Craig A, Akoto AO, et al. von Willebrand factor propeptide in malaria: evidence of acute endothelial cell activation. Br J Haematol. 2006;133(5):562–9. Epub 2006/05/10. 10.1111/j.1365-2141.2006.06067.x . PubMed DOI
Bridges DJ, Bunn J, van Mourik JA, Grau G, Preston RJ, Molyneux M, et al. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood. 2010;115(7):1472–4. Epub 2009/11/10. 10.1182/blood-2009-07-235150 PubMed DOI PMC
de Mast Q, Groot E, Lenting PJ, de Groot PG, McCall M, Sauerwein RW, et al. Thrombocytopenia and release of activated von Willebrand Factor during early Plasmodium falciparum malaria. J Infect Dis. 2007;196(4):622–8. Epub 2007/07/13. 10.1086/519844 . PubMed DOI
Larkin D, de Laat B, Jenkins PV, Bunn J, Craig AG, Terraube V, et al. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition. PLoS pathogens. 2009;5(3):e1000349 Epub 2009/03/21. 10.1371/journal.ppat.1000349 PubMed DOI PMC