The essential function of the Trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNATyr

. 2016 Aug ; 22 (8) : 1190-9. [epub] 20160609

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid27284166

Grantová podpora
R01 GM084065 NIGMS NIH HHS - United States

Trypanosoma brucei, the etiologic agent of sleeping sickness, encodes a single intron-containing tRNA, tRNA(Tyr), and splicing is essential for its viability. In Archaea and Eukarya, tRNA splicing requires a series of enzymatic steps that begin with intron cleavage by a tRNA-splicing endonuclease and culminates with joining the resulting tRNA exons by a splicing tRNA ligase. Here we explored the function of TbTrl1, the T. brucei homolog of the yeast Trl1 tRNA ligase. We used a combination of RNA interference and molecular biology approaches to show that down-regulation of TbTrl1 expression leads to accumulation of intron-containing tRNA(Tyr) and a concomitant growth arrest at the G1 phase. These defects were efficiently rescued by expression of an "intronless" version of tRNA(Tyr) in the same RNAi cell line. Taken together, these experiments highlight the crucial importance of the TbTrl1 for tRNA(Tyr) maturation and viability, while revealing tRNA splicing as its only essential function.

Zobrazit více v PubMed

Abelson J, Trotta CR, Li H. 1998. tRNA splicing. J Biol Chem 273: 12685–12688. PubMed

Aeby E, Ullu E, Yepiskoposyan H, Schimanski B, Roditi I, Mühlemann O, Schneider A. 2010. tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids Res 38: 5833–5843. PubMed PMC

Biniszkiewicz D, Cesnaviciene E, Shub DA. 1994. Self-splicing group I intron in cyanobacterial initiator methionine tRNA: evidence for lateral transfer of introns in bacteria. EMBO J 13: 4629–4635. PubMed PMC

Butler AR, White JH, Stark MJ. 1991. Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137: 1749–1757. PubMed

Chakravarty AK, Shuman S. 2012. The sequential 2′,3′-cyclic phosphodiesterase and 3′-phosphate/5′-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent. Nucleic Acids Res 40: 8558–8567. PubMed PMC

Chakravarty AK, Subbotin R, Chait BT, Shuman S. 2012. RNA ligase RtcB splices 3′-phosphate and 5′-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3′)pp(5′)G intermediates. Proc Natl Acad Sci 109: 6072–6077. PubMed PMC

Chan PP, Lowe TM. 2009. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37: 93–97. PubMed PMC

Choffat Y, Suter B, Behra R, Kubli E. 1988. Pseudouridine modification in the tRNA (Tyr) anticodon is dependent on the presence, but independent of the size and sequence, of the intron in eucaryotic tRNA (Tyr) genes. Mol Cell Biol 8: 3332–3337. PubMed PMC

Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159. PubMed

De Robertis EM, Black P, Nishikura K. 1981. Intranuclear location of the tRNA splicing enzymes. Cell 23: 89–93. PubMed

Englert M, Beier H. 2005. Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins. Nucleic Acids Res 33: 388–399. PubMed PMC

Englert M, Latz A, Becker D, Gimple O, Beier H, Akama K. 2007. Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Biochimie 89: 1351–1365. PubMed

Englert M, Sheppard K, Gundllapalli S, Beier H, Söll D. 2010. Branchiostoma floridae has separate healing and sealing enzymes for 5′-phosphate RNA ligation. Proc Natl Acad Sci 107: 16834–16839. PubMed PMC

Filipowicz W, Shatkin AJ. 1983. Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell 32: 547–557. PubMed

Genschik P, Billy E, Swianiewicz M, Filipowicz W. 1997. The human RNA 3′-terminal phosphate cyclase is a member of a new family of proteins conserved in Eucarya, Bacteria and Archaea. EMBO J 16: 2955–2967. PubMed PMC

Genschik P, Drabikowski K, Filipowicz W. 1998. Characterization of the Escherichia coli RNA 3′-terminal phosphate cyclase and its σ54-regulated operon. J Biol Chem 273: 25516–25526. PubMed

Ghavidel A, Kislinger T, Pogoutse O, Sopko R, Jurisica I, Emili A. 2007. Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint. Cell 131: 915–926. PubMed

Greer CL. 1986. Assembly of a tRNA splicing complex: evidence for concerted excision and joining steps in splicing in vitro. Mol Cell Biol 6: 635–644. PubMed PMC

Greer CL, Peebles CL, Gegenheimer P, Abelson J. 1983. Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32: 537–546. PubMed

Jensen BC, Kifer CT, Brekken DL, Randall AC, Wang Q, Drees BL, Parsons M. 2007. Characterization of protein kinase CK2 from Trypanosoma brucei. Mol Biochem Parasitol 151: 28–40. PubMed PMC

Klassen R, Meinhardt F. 2005. Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol 7: 393–401. PubMed

Klassen R, Teichert S, Meinhardt F. 2004. Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation. Mol Microbiol 53: 263–273. PubMed

Klassen R, Paluszynski JP, Wemhoff S, Pfeiffer A, Fricke J, Meinhardt F. 2008. The primary target of the killer toxin from Pichia acaciae is tRNA (Gln). Mol Microbiol 69: 681–697. PubMed

Kuhsel MG, Strickland R, Palmer JD. 1990. An ancient group I intron shared by eubacteria and chloroplasts. Science 250: 1570–1573. PubMed

Lu J, Huang B, Esberg A, Johansson MJ, Byström AS. 2005. The Kluyveromyces lactis gamma-toxin targets tRNA anticodons. RNA 11: 1648–1654. PubMed PMC

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res 43: D222–D226. PubMed PMC

Meineke B, Schwer B, Schaffrath R, Shuman S. 2011. Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC. Nucleic Acids Res 39: 687–700. PubMed PMC

Mohanty BK, Kushner SR. 2013. Deregulation of poly(A) polymerase I in Escherichia coli inhibits protein synthesis and leads to cell death. Nucleic Acids Res 41: 1757–1766. PubMed PMC

Padilla-Mejía NE, Florencio-Martínez LE, Figueroa-Angulo EE, Manning-Cela RG, Hernández-Rivas R, Myler PJ, Martínez-Calvillo S. 2009. Gene organization and sequence analyses of transfer RNA genes in Trypanosomatid parasites. BMC Genomics 10: 232. PubMed PMC

Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR. 2004. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117: 311–321. PubMed

Phizicky EM, Consaul SA, Nehrke KW, Abelson J. 1992. Yeast tRNA ligase mutants are nonviable and accumulate tRNA splicing intermediates. J Biol Chem 267: 4577–4582. PubMed

Pieńkowska J, Michałowski D, Krzyzosiak WJ, Szweykowska-Kulińska Z. 2002. Pseudouridylation of U35 in the anticodon of Arabidopsis thaliana pre-tRNATyr depends on length rather than structure of an intron. Biochim Biophys Acta 1574: 137–144. PubMed

Polymenis M, Aramayo R. 2015. Translate to divide: сontrol of the cell cycle by protein synthesis. Microbial Cell 2: 94–104. PubMed PMC

Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B, Mechtler K, Will CL, Trowitzsch S, Lührmann R, Söll D, et al. 2011. HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331: 760–764. PubMed

Reinhold-Hurek B, Shub DA. 1992. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357: 173–176. PubMed

Remus BS, Shuman S. 2013. A kinetic framework for tRNA ligase and enforcement of a 2′-phosphate requirement for ligation highlights the design logic of an RNA repair machine. RNA 19: 659–669. PubMed PMC

Rubio MAT, Paris Z, Gaston KW, Fleming IMC, Sample P, Trotta CR, Alfonzo JD. 2013. Unusual noncanonical intron editing is important for tRNA splicing in Trypanosoma brucei. Mol Cell 52: 184–192. PubMed PMC

Sawaya R, Schwer B, Shuman S. 2003. Genetic and biochemical analysis of the functional domains of yeast tRNA ligase. J Biol Chem 278: 43928–43938. PubMed

Schneider A, McNally KP, Agabian N. 1993. Splicing and 3′-processing of the tyrosine tRNA of Trypanosoma brucei. J Biol Chem 268: 21868–21874. PubMed

Shapiro SZ, Doxsey SJ. 1982. Purification of nuclei from a flagellate protozoan, Trypanosoma brucei. Anal Biochem 127: 112–115. PubMed

Shi H, Djikeng A, Mark T, Wirtz E, Tschudi C, Ullu E. 2000. Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA 6: 1069–1076. PubMed PMC

Shigematsu M, Ogawa T, Tanaka W, Takahashi K, Kitamoto HK, Hidaka M, Masaki H. 2013. Evidence for DNA cleavage caused directly by a transfer RNA-targeting toxin. PLoS One 8: e75512. PubMed PMC

Sinha H, David L, Pascon RC, Clauder-Münster S, Krishnakumar S, Nguyen M, Shi G, Dean J, Davis RW, Oefner PJ, et al. 2008. Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180: 1661–1670. PubMed PMC

Spinelli SL, Consaul SA, Phizicky EM. 1997. A conditional lethal yeast phosphotransferase (tpt1) mutant accumulates tRNAs with a 2′-phosphate and an undermodified base at the splice junction. RNA 3: 1388–1400. PubMed PMC

Tanaka N, Shuman S. 2011. RtcB is the RNA ligase component of an Escherichia coli RNA repair operon. J Biol Chem 286: 7727–7731. PubMed PMC

Tanaka N, Meineke B, Shuman S. 2011a. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 286: 30253–30257. PubMed PMC

Tanaka N, Chakravarty AK, Maughan B, Shuman S. 2011b. Novel mechanism of RNA repair by RtcB via sequential 2′,3′-cyclic phosphodiesterase and 3′-Phosphate/5′-hydroxyl ligation reactions. J Biol Chem 286: 43134–43143. PubMed PMC

Tocchini-Valentini GP1, Baldi MI, Gandini-Attardi D, Mattoccia E. 1993. Cleavage site recognition by the tRNA splicing endoribonuclease. Gene 135: 93–97. PubMed

van Tol H, Beier H. 1988. All human tRNATyr genes contain introns as a prerequisite for pseudouridine biosynthesis in the anticodon. Nucleic Acids Res 16: 1951–1966. PubMed PMC

Wang LK, Shuman S. 2005. Structure-function analysis of yeast tRNA ligase. RNA 11: 966–975. PubMed PMC

Wang Z, Morris JC, Drew ME, Englund PT. 2000. Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. J Biol Chem 275: 40174–40179. PubMed

Wang LK, Lima CD, Shuman S. 2002. Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. EMBO J 21: 3873–3880. PubMed PMC

Westmoreland TS, Wickramasekara SM, Guo AY, Selim AL, Winsor TS, Greenleaf AL, Blackwell KL, Olson JA Jr, Marks JR, Bennett CB. 2009. Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae. PLoS One 4: e5830. PubMed PMC

Yoshihisa T, Yunoki-Esaki K, Ohshima C, Tanaka N, Endo T. 2003. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Mol Biol Cell 14: 3266–3279. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...