Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27346372
PubMed Central
PMC4921909
DOI
10.1038/srep28484
PII: srep28484
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- dysbióza mikrobiologie MeSH
- gastrointestinální trakt mikrobiologie MeSH
- lidé MeSH
- mikrobiota genetika MeSH
- RNA ribozomální 16S genetika MeSH
- roztroušená skleróza mikrobiologie MeSH
- střevní mikroflóra genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Multiple sclerosis (MS) is an immune-mediated disease, the etiology of which involves both genetic and environmental factors. The exact nature of the environmental factors responsible for predisposition to MS remains elusive; however, it's hypothesized that gastrointestinal microbiota might play an important role in pathogenesis of MS. Therefore, this study was designed to investigate whether gut microbiota are altered in MS by comparing the fecal microbiota in relapsing remitting MS (RRMS) (n = 31) patients to that of age- and gender-matched healthy controls (n = 36). Phylotype profiles of the gut microbial populations were generated using hypervariable tag sequencing of the V3-V5 region of the 16S ribosomal RNA gene. Detailed fecal microbiome analyses revealed that MS patients had distinct microbial community profile compared to healthy controls. We observed an increased abundance of Psuedomonas, Mycoplana, Haemophilus, Blautia, and Dorea genera in MS patients, whereas control group showed increased abundance of Parabacteroides, Adlercreutzia and Prevotella genera. Thus our study is consistent with the hypothesis that MS patients have gut microbial dysbiosis and further study is needed to better understand their role in the etiopathogenesis of MS.
Department of Biophysics Mayo Clinic 200 1st ST SW Rochester MN 55905 USA
Department of Gastroenterology Mayo Clinic Rochester MN 55905 USA
Department of Immunology Mayo Clinic 200 1st ST SW Rochester MN 55905 USA
Department of Pathology 25 S Grand Ave 1080 ML University of Iowa Iowa City IA 52242 USA
Department of Surgical Research Mayo Clinic 200 1st ST SW Rochester MN 55905 USA
Zobrazit více v PubMed
Sospedra M. & Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 23, 683–747 (2005). PubMed
Ascherio A. Environmental factors in multiple sclerosis. Expert Rev Neurother 13, 3–9 (2013). PubMed
Oksenberg J. R. Decoding multiple sclerosis: an update on genomics and future directions. Expert Rev Neurother 13, 11–19 (2013). PubMed
Fleming J. & Fabry Z. The hygiene hypothesis and multiple sclerosis. Annals of neurology 61, 85–89 (2007). PubMed
Rook G. A. Hygiene hypothesis and autoimmune diseases. Clinical reviews in allergy & immunology 42, 5–15 (2012). PubMed
Nusrat S., Gulick E., Levinthal D. & Bielefeldt K. Anorectal dysfunction in multiple sclerosis: a systematic review. ISRN neurology 2012, 376023 (2012). PubMed PMC
Yacyshyn B., Meddings J., Sadowski D. & Bowen-Yacyshyn M. B. Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Digestive diseases and sciences 41, 2493–2498 (1996). PubMed
Gupta G., Gelfand J. M. & Lewis J. D. Increased risk for demyelinating diseases in patients with inflammatory bowel disease. Gastroenterology 129, 819–826 (2005). PubMed
Kimura K. et al.. Concurrence of inflammatory bowel disease and multiple sclerosis. Mayo Clinic proceedings 75, 802–806 (2000). PubMed
Braniste V. et al.. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6, 263ra158 (2014). PubMed PMC
Jeraldo P. et al.. IM-TORNADO: A Tool for Comparison of 16S Reads from Paired-End Libraries. PLoS One 9, e114804 (2014). PubMed PMC
Miyake S. et al.. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS One 10, e0137429 (2015). PubMed PMC
Cantarel B. L. et al.. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med 63, 729–734 (2015). PubMed PMC
Walters W. A., Xu Z. & Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 588, 4223–4233 (2014). PubMed PMC
Korkina L., Kostyuk V., De Luca C. & Pastore S. Plant phenylpropanoids as emerging anti-inflammatory agents. Mini Rev Med Chem 11, 823–835 (2011). PubMed
Schogor A. L. et al.. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants. PLoS One 9, e87949 (2014). PubMed PMC
Toh H., Oshima K., Suzuki T., Hattori M. & Morita H. Complete Genome Sequence of the Equol-Producing Bacterium Adlercreutzia equolifaciens DSM 19450T. Genome announcements 1 (2013). PubMed PMC
Moussa L. et al.. A low dose of fermented soy germ alleviates gut barrier injury, hyperalgesia and faecal protease activity in a rat model of inflammatory bowel disease. PLoS One 7, e49547 (2012). PubMed PMC
Confavreux C., Hutchinson M., Hours M. M., Cortinovis-Tourniaire P. & Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. The New England journal of medicine 339, 285–291 (1998). PubMed
Moore S. M. et al.. Multiple functional therapeutic effects of the estrogen receptor beta agonist indazole-Cl in a mouse model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America 111, 18061–18066 (2014). PubMed PMC
Spence R. D. & Voskuhl R. R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Frontiers in neuroendocrinology 33, 105–115 (2012). PubMed PMC
Labbe A., Ganopolsky J. G., Martoni C. J., Prakash S. & Jones M. L. Bacterial bile metabolising gene abundance in Crohn’s, ulcerative colitis and type 2 diabetes metagenomes. PLoS One 9, e115175 (2014). PubMed PMC
Vavassori P., Mencarelli A., Renga B., Distrutti E. & Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 183, 6251–6261 (2009). PubMed
Gevers D. et al.. The treatment-naive microbiome in new-onset Crohn’s disease. Cell host & microbe 15, 382–392 (2014). PubMed PMC
Atarashi K. et al.. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011). PubMed PMC
Kang D. W. et al.. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8, e68322 (2013). PubMed PMC
Murri M. et al.. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC medicine 11, 46 (2013). PubMed PMC
Mukhopadhya I., Hansen R., El-Omar E. M. & Hold G. L. IBD-what role do Proteobacteria play? Nature reviews. Gastroenterology & hepatology 9, 219–230 (2012). PubMed
Jenq R. R. et al.. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 209, 903–911 (2012). PubMed PMC
Bajaj J. S. et al.. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. American journal of physiology. Gastrointestinal and liver physiology 303, G675–685 (2012). PubMed PMC
Salter S. J. et al.. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC biology 12, 87 (2014). PubMed PMC
McDonald W. I. et al.. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of neurology 50, 121–127 (2001). PubMed
Langille M. G. et al.. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology 31, 814–821 (2013). PubMed PMC