Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication

. 2016 Jul 12 ; 6 () : 29674. [epub] 20160712

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27405089

The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat-TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.

Zobrazit více v PubMed

Murchie A. I. H. et al.. Structure-based drug design targeting an inactive RNA conformation: Exploiting the flexibility of HIV-1 TAR RNA. J. Mol. Biol. 336, 625–638 (2004). PubMed

Hamy F. et al.. Hydrogen-bonding contacts in the major groove are required for human-immunodeficiency-virus type-1 tat protein recognition of TAR RNA. J. Mol. Biol. 230, 111–123 (1993). PubMed

Churcher M. J. et al.. High-affinity binding of TAR RNA by the human-immunodeficiency-virus type-1 Tat protein requires base-pairs in the RNA stem and amino-acid-residues flanking the basic region. J. Mol. Biol. 230, 90–110 (1993). PubMed

Aboul-ela F., Karn J. & Varani G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J. Mol. Biol. 253, 313–332 (1995). PubMed

Aboul-ela F., Karn J. & Varani G. Structure of HIV-1 TAR RNA in the Absence of Ligands Reveals a Novel Conformation of the Trinucleotide Bulge. Nucleic Acids Research 24, 3974–3981 (1996). PubMed PMC

Huq I., Ping Y. H., Tamilarasu N. & Rana T. M. Controlling human immunodeficiency virus type 1 gene expression by unnatural peptides. Biochemistry 38, 5172–5177 (1999). PubMed

Gallego J. & Varani G. Targeting RNA with small-molecule drugs: Therapeutic promise and chemical challenges. Acc. Chem. Res. 34, 836–843 (2001). PubMed

Dinesh C. U. & Rana T. M. In Small Molecule DNA and RNA Binders vol. 1 (eds Demeunynck M., Bailly C. & Wilson W. D.) 58–87 (Wiley-VCH Verlag GmbH & Co. KGaA, 2003).

Baba M. Recent status of HIV-1 gene expression inhibitors. Antiviral Res. 71, 301–306 (2006). PubMed

Davidson A. et al.. Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc. Natl. Acad. Sci. USA 106, 11931–11936 (2009). PubMed PMC

Zeiger M. et al.. Fragment based search for small molecule inhibitors of HIV-1 Tat-TAR. Bioorg. Med. Chem. Lett. 24, 5576–5580 (2014). PubMed

Oleksi A. et al.. Molecular recognition of a three-way DNA junction by a metallosupramolecular helicate. Angew. Chem., Intl. Ed. 45, 1227–1231 (2006). PubMed

Cerasino L., Hannon M. J. & Sletten E. DNA three-way junction with a dinuclear iron(II) supramolecular helicate at the center: A NMR structural study. Inorg. Chem. 46, 6245–6251 (2007). PubMed

Phongtongpasuk S. et al.. Binding of a designed anti-cancer drug to the central cavity of an RNA three-way junction. Angew. Chem. Int. Ed. 52, 11513–11516 (2013). PubMed

Malina J., Hannon M. J. & Brabec V. Recognition of DNA three-way junctions by metallosupramolecular cylinders: Gel electrophoresis studies. Chem. Eur. J. 13, 3871–3877 (2007). PubMed

Yu H., Wang X., Fu M., Ren J. & Qu X. Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA. Nucl. Acids. Res. 36, 5695–5703 (2008). PubMed PMC

Buck D. P., Spillane C. B., Collins J. G. & Keene F. R. Binding of a dinuclear ruthenium(II) complex to the TAR region of the HIV-AIDS viral RNA. Mol. BioSyst. 4, 851–854 (2008). PubMed

Buck D. P., Paul J. A., Pisani M. J., Collins J. G. & Keene F. R. Binding of a flexibly-linked dinuclear ruthenium(II) complex to adenine-bulged DNA duplexes. Aust. J. Chem. 63, 1365–1375 (2010).

Malina J., Hannon M. J. & Brabec V. Recognition of DNA bulges by dinuclear iron(II) metallosupramolecular helicates. FEBS J. 281, 987–997 (2014). PubMed

Wang D. et al.. Multivalent binding oligomers inhibit HIV Tat–TAR interaction critical for viral replication. Bioorg. Med. Chem. Lett. 19, 6893–6897 (2009). PubMed PMC

Wang J. et al.. Design, synthesis and biological evaluation of substituted guanidine indole derivatives as potential inhibitors of HIV-1 Tat-TAR interaction. Med. Chem. 10, 738–746 (2014). PubMed

Manfroni G. et al.. Synthesis and biological evaluation of 2-phenylquinolones targeted at Tat/TAR recognition. Bioorg. Med. Chem. Lett. 19, 714–717 (2009). PubMed

Pang R. F., Zhang C. L., Yuan D. K. & Yang M. Design and SAR of new substituted purines bearing aryl groups at N9 position as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem. 16, 8178–8186 (2008). PubMed

Hannon M. J., Painting C. L., Jackson A., Hamblin J. & Errington W. An inexpensive approach to supramolecular architecture. Chem. Commun., 1807–1808 (1997).

Hannon M. J. et al.. Intramolecular DNA coiling mediated by a metallo-supramolecular cylinder. Angew. Chem. Intl. Ed. 40, 879–884 (2001). PubMed

Meistermann I. et al.. Intramolecular DNA coiling mediated by metallosupramolecular cylinders: Differential binding of P and M helical enantiomers. Proc. Natl. Acad. Sci. USA 99, 5069–5074 (2002). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace