Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27435875
PubMed Central
PMC4951690
DOI
10.1038/srep29952
PII: srep29952
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus MeSH
- bleomycin MeSH
- bronchoalveolární lavážní tekutina MeSH
- bronchy patologie MeSH
- demografie MeSH
- down regulace účinky léků MeSH
- epitelové buňky enzymologie MeSH
- extracelulární matrix enzymologie MeSH
- fibroblasty účinky léků metabolismus MeSH
- glutathionperoxidasa metabolismus MeSH
- intersticiální plicní nemoci enzymologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- oxidační stres účinky léků MeSH
- plicní fibróza enzymologie MeSH
- senioři MeSH
- TNF-alfa metabolismus MeSH
- transformující růstový faktor beta1 metabolismus MeSH
- upregulace MeSH
- vitamin K 3 farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- bleomycin MeSH
- glutathionperoxidasa MeSH
- GPX3 protein, human MeSH Prohlížeč
- Gpx3 protein, mouse MeSH Prohlížeč
- TNF-alfa MeSH
- transformující růstový faktor beta1 MeSH
- vitamin K 3 MeSH
Aberrant antioxidant activity and excessive deposition of extracellular matrix (ECM) are hallmarks of interstitial lung diseases (ILD). It is known that oxidative stress alters the ECM, but extracellular antioxidant defence mechanisms in ILD are incompletely understood. Here, we extracted abundance and detergent solubility of extracellular antioxidant enzymes from a proteomic dataset of bleomycin-induced lung fibrosis in mice and assessed regulation and distribution of glutathione peroxidase 3 (GPX3) in murine and human lung fibrosis. Superoxide dismutase 3 (Sod3), Gpx3, and Gpx activity were increased in mouse BALF during bleomycin-induced lung fibrosis. In lung tissue homogenates, Gpx3, but not Sod3, was upregulated and detergent solubility profiling indicated that Gpx3 associated with ECM proteins. Immunofluorescence analysis showed that Gpx3 was expressed by bronchial epithelial cells and interstitial fibroblasts and localized to the basement membrane and interstitial ECM in lung tissue. As to human ILD samples, BALF of some patients contained high levels of GPX3, and GPX3 was upregulated in lung homogenates from IPF patients. GPX3 expression in primary human bronchial epithelial cells and lung fibroblasts was downregulated by TNF-α, but more variably regulated by TGF-β1 and menadione. In conclusion, the antioxidant enzyme GPX3 localizes to lung ECM and is variably upregulated in ILD.
Zobrazit více v PubMed
Grunes D. & Beasley M. B. Hypersensitivity pneumonitis: a review and update of histologic findings. J. Clin. Pathol. 66, 888–895, doi: 10.1136/jclinpath-2012-201337 (2013). PubMed DOI
Selman M., Pardo A. & King T. E. Jr. Hypersensitivity pneumonitis: insights in diagnosis and pathobiology. Am. J. Respir. Crit. Care Med. 186, 314–324, doi: 10.1164/rccm.201203-0513CI (2012). PubMed DOI
Katzenstein A. L. Smoking-related interstitial fibrosis (SRIF), pathogenesis and treatment of usual interstitial pneumonia (UIP), and transbronchial biopsy in UIP. Mod. Pathol. 25 Suppl 1, S68–78, doi: 10.1038/modpathol.2011.154 (2012). PubMed DOI
Valeyre D. et al.. Sarcoidosis. Lancet 383, 1155–1167, doi: 10.1016/S0140-6736(13)60680-7 (2014). PubMed DOI
Patterson K. C. & Strek M. E. Pulmonary fibrosis in sarcoidosis. Clinical features and outcomes. Ann. Am. Thorac. Soc. 10, 362–370, doi: 10.1513/AnnalsATS.201303-069FR (2013). PubMed DOI
Kim D. S., Collard H. R. & King T. E. Jr. Classification and natural history of the idiopathic interstitial pneumonias. Proc. Am. Thorac. Soc. 3, 285–292, doi: 10.1513/pats.200601-005TK (2006). PubMed DOI PMC
Raghu G., Weycker D., Edelsberg J., Bradford W. Z. & Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 174, 810–816, doi: 10.1164/rccm.200602-163OC (2006). PubMed DOI
Cheresh P., Kim S. J., Tulasiram S. & Kamp D. W. Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta 1832, 1028–1040, doi: 10.1016/j.bbadis.2012.11.021 (2013). PubMed DOI PMC
Liu R. M. & Gaston Pravia K. A. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radical Biol. Med. 48, 1–15, doi: 10.1016/j.freeradbiomed.2009.09.026 (2010). PubMed DOI PMC
Maier K., Leuschel L. & Costabel U. Increased levels of oxidized methionine residues in bronchoalveolar lavage fluid proteins from patients with idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 143, 271–274, doi: 10.1164/ajrccm/143.2.271 (1991). PubMed DOI
Rottoli P. et al.. Carbonylated proteins in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics 5, 2612–2618, doi: 10.1002/pmic.200401206 (2005). PubMed DOI
Psathakis K. et al.. Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis. Eur. J. Clin. Invest. 36, 362–367, doi: 10.1111/j.1365-2362.2006.01636.x (2006). PubMed DOI
Bargagli E. et al.. Analysis of carbonylated proteins in bronchoalveolar lavage of patients with diffuse lung diseases. Lung 185, 139–144, doi: 10.1007/s00408-007-9001-6 (2007). PubMed DOI
Rahman I. et al.. Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis. Free Radical Biol. Med. 27, 60–68 (1999). PubMed
Cantin A. M., Hubbard R. C. & Crystal R. G. Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 139, 370–372, doi: 10.1164/ajrccm/139.2.370 (1989). PubMed DOI
Meyer A., Buhl R. & Magnussen H. The effect of oral N-acetylcysteine on lung glutathione levels in idiopathic pulmonary fibrosis. Eur. Respir. J. 7, 431–436 (1994). PubMed
Boots A. W. et al.. Antioxidant status associated with inflammation in sarcoidosis: a potential role for antioxidants. Respir. Med. 103, 364–372, doi: 10.1016/j.rmed.2008.10.007 (2009). PubMed DOI
Behr J., Degenkolb B., Beinert T., Krombach F. & Vogelmeier C. Pulmonary glutathione levels in acute episodes of Farmer’s lung. Am. J. Respir. Crit. Care Med. 161, 1968–1971, doi: 10.1164/ajrccm.161.6.9907112 (2000). PubMed DOI
Hecker L. et al.. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 15, 1077–1081, doi: 10.1038/nm.2005 (2009). PubMed DOI PMC
Carnesecchi S. et al.. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid. Redox Signal. 15, 607–619, doi: 10.1089/ars.2010.3829 (2011). PubMed DOI PMC
Winterbourn C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286, doi: 10.1038/nchembio.85 (2008). PubMed DOI
Kagan H. M. & Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 88, 660–672, doi: 10.1002/jcb.10413 (2003). PubMed DOI
Parker M. W. et al.. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124, 1622–1635, doi: 10.1172/JCI71386 (2014). PubMed DOI PMC
Kliment C. R. & Oury T. D. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radical Biol. Med. 49, 707–717, doi: 10.1016/j.freeradbiomed.2010.04.036 (2010). PubMed DOI
Fattman C. L. et al.. Enhanced bleomycin-induced pulmonary damage in mice lacking extracellular superoxide dismutase. Free Radical Biol. Med. 35, 763–771 (2003). PubMed
Kliment C. R. et al.. Extracellular superoxide dismutase protects against matrix degradation of heparan sulfate in the lung. Antioxid. Redox Signal. 10, 261–268, doi: 10.1089/ars.2007.1906 (2008). PubMed DOI PMC
Kliment C. R. et al.. Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J. Biol. Chem. 284, 3537–3545, doi: 10.1074/jbc.M807001200 (2009). PubMed DOI PMC
Zelko I. N. & Folz R. J. Extracellular superoxide dismutase attenuates release of pulmonary hyaluronan from the extracellular matrix following bleomycin exposure. FEBS Lett. 584, 2947–2952, doi: 10.1016/j.febslet.2010.05.025 (2010). PubMed DOI PMC
Bjermer L., Lundgren R. & Hallgren R. Hyaluronan and type III procollagen peptide concentrations in bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. Thorax 44, 126–131 (1989). PubMed PMC
Cormier Y., Laviolette M., Cantin A., Tremblay G. M. & Begin R. Fibrogenic activities in bronchoalveolar lavage fluid of farmer’s lung. Chest 104, 1038–1042 (1993). PubMed
Kinnula V. L. Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases. Thorax 60, 693–700, doi: 10.1136/thx.2004.037473 (2005). PubMed DOI PMC
Burk R. F., Olson G. E., Winfrey V. P., Hill K. E. & Yin D. Glutathione peroxidase-3 produced by the kidney binds to a population of basement membranes in the gastrointestinal tract and in other tissues. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G32–38, doi: 10.1152/ajpgi.00064.2011 (2011). PubMed DOI PMC
Yamada Y. et al.. Major shifts in the spatio-temporal distribution of lung antioxidant enzymes during influenza pneumonia. PLoS One 7, e31494, doi: 10.1371/journal.pone.0031494 (2012). PubMed DOI PMC
Gao F., Kinnula V. L., Myllarniemi M. & Oury T. D. Extracellular superoxide dismutase in pulmonary fibrosis. Antioxid. Redox Signal. 10, 343–354, doi: 10.1089/ars.2007.1908 (2008). PubMed DOI PMC
Schiller H. B. et al.. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol. Syst. Biol. 11, 819, doi: 10.15252/msb.20156123 (2015). PubMed DOI PMC
Avissar N. et al.. Extracellular glutathione peroxidase in human lung epithelial lining fluid and in lung cells. Am. J. Physiol. 270, L173–182 (1996). PubMed
Matalon S., Holm B. A., Baker R. R., Whitfield M. K. & Freeman B. A. Characterization of antioxidant activities of pulmonary surfactant mixtures. Biochim. Biophys. Acta 1035, 121–127 (1990). PubMed
Park J. Y. et al.. Proteomic analysis of pancreatic juice for the identification of biomarkers of pancreatic cancer. J. Cancer Res. Clin. Oncol. 137, 1229–1238, doi: 10.1007/s00432-011-0992-2 (2011). PubMed DOI PMC
Naba A. et al.. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics 11, M111 014647, doi: 10.1074/mcp.M111.014647 (2012). PubMed DOI PMC
Rush J. W. E. & Sandiford S. D. Plasma glutathione peroxidase in healthy young adults: influence of gender and physical activity. Clin. Biochem. 36, 345–351, doi: 10.1016/S0009-9120(03)00039-0 (2003). PubMed DOI
Meplan C. et al.. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J. 21, 3063–3074, doi: 10.1096/fj.07-8166com (2007). PubMed DOI
Olivieri O. et al.. Selenium status, fatty acids, vitamins A and E, and aging: the Nove Study. Am J Clin Nutr. 60, 510–517 (1994). PubMed
Ray A. L. et al.. Low serum selenium and total carotenoids predict mortality among older women living in the community: the women’s health and aging studies. J Nutr. 136, 172–176 (2006). PubMed
Akbaraly N. T. et al.. Selenium and Mortality in the Elderly: Results from the EVA Study. Clin Chem. 51, 2117–2123, doi: 10.1373/clinchem.2005.055301 (2005). PubMed DOI
Bermudez O. et al.. Gli1 mediates lung cancer cell proliferation and Sonic Hedgehog-dependent mesenchymal cell activation. PLoS One. 8, e63226. doi: 10.1371/journal.pone.0063226 (2013). PubMed DOI PMC
Staab-Weijnitz C. A. et al.. FK506-binding Protein 10 is a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 192, 455–467, doi: 10.1164/rccm.201412-2233OC (2015). PubMed DOI PMC
Comhair S. A., Bhathena P. R., Farver C., Thunnissen F. B. & Erzurum S. C. Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. FASEB J. 15, 70–78, doi: 10.1096/fj.00-0085com (2001). PubMed DOI
Olson G. E. et al.. Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am. J. Physiol. Renal Physiol. 298, F1244–1253, doi: 10.1152/ajprenal.00662.2009 (2010). PubMed DOI PMC
Comhair S. A., Lewis M. J., Bhathena P. R., Hammel J. P. & Erzurum S. C. Increased glutathione and glutathione peroxidase in lungs of individuals with chronic beryllium disease. Am. J. Respir. Crit. Care Med. 159, 1824–1829, doi: 10.1164/ajrccm.159.6.9810044 (1999). PubMed DOI
Rushworth S. A. & MacEwan D. J. HO-1 underlies resistance of AML cells to TNF-induced apoptosis. Blood 111, 3793–3801, doi: 10.1182/blood-2007-07-104042 (2008). PubMed DOI
Rushworth S. A., Shah S. & MacEwan D. J. TNF mediates the sustained activation of Nrf2 in human monocytes. J. Immunol. 187, 702–707, doi: 10.4049/jimmunol.1004117 (2011). PubMed DOI
Song Y., Shi Y., Ao L. H., Harken A. H. & Meng X. Z. TLR4 mediates LPS-induced HO-1 expression in mouse liver: role of TNF-alpha and IL-1beta. World J. Gastroenterol. 9, 1799–1803 (2003). PubMed PMC
Terry C. M., Clikeman J. A., Hoidal J. R. & Callahan K. S. Effect of tumor necrosis factor-alpha and interleukin-1 alpha on heme oxygenase-1 expression in human endothelial cells. Am. J. Physiol. 274, H883–891 (1998). PubMed
Lin T. H. et al.. Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J. Cell. Physiol. 222, 757–768, doi: 10.1002/jcp.22008 (2010). PubMed DOI
Lee Y. S. et al.. Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol. Endocrinol. 22, 2176–2189, doi: 10.1210/me.2008-0023 (2008). PubMed DOI PMC
Michaeloudes C., Chang P. J., Petrou M. & Chung K. F. Transforming growth factor-beta and nuclear factor E2-related factor 2 regulate antioxidant responses in airway smooth muscle cells: role in asthma. Am. J. Respir. Crit. Care Med. 184, 894–903, doi: 10.1164/rccm.201011-1780OC (2011). PubMed DOI PMC
Bakin A. V. et al.. Smad3-ATF3 signaling mediates TGF-beta suppression of genes encoding Phase II detoxifying proteins. Free Radical Biol. Med. 38, 375–387, doi: 10.1016/j.freeradbiomed.2004.10.033 (2005). PubMed DOI
Michaeloudes C., Sukkar M. B., Khorasani N. M., Bhavsar P. K. & Chung K. F. TGF-beta regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 300, L295–304, doi: 10.1152/ajplung.00134.2010 (2011). PubMed DOI PMC
Huang Y., Fang W., Wang Y., Yang W. & Xiong B. Transforming growth factor-beta1 induces glutathione peroxidase-1 and protects from H2O2-induced cell death in colon cancer cells via the Smad2/ERK1/2/HIF-1alpha pathway. Int. J. Mol. Med. 29, 906–912, doi: 10.3892/ijmm.2012.901 (2012). PubMed DOI
Comhair S. A., Thomassen M. J. & Erzurum S. C. Differential induction of extracellular glutathione peroxidase and nitric oxide synthase 2 in airways of healthy individuals exposed to 100% O(2) or cigarette smoke. Am. J. Respir. Cell Mol. Biol. 23, 350–354, doi: 10.1165/ajrcmb.23.3.4076 (2000). PubMed DOI
Voetsch B. et al.. Promoter polymorphisms in the plasma glutathione peroxidase (GPx-3) gene: a novel risk factor for arterial ischemic stroke among young adults and children. Stroke 38, 41–49, doi: 10.1161/01.STR.0000252027.53766.2b (2007). PubMed DOI PMC
John G. et al.. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clin. Sci. (Lond.) 126, 207–221, doi: 10.1042/CS20130117 (2014). PubMed DOI PMC
Schaab C., Geiger T., Stoehr G., Cox J. & Mann M. Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Mol. Cell. Proteomics 11, M111 014068, doi: 10.1074/mcp.M111.014068 (2012). PubMed DOI PMC
Raghu G. et al.. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 183, 788–824, doi: 10.1164/rccm.2009-040GL (2011). PubMed DOI PMC
Sterclova M., Paluch P., Skibova J. & Vasakova M. Influence of age on manifestation, VC and TLCO values, and bronchoalveolar lavage cell counts of sarcoidosis and extrinsic allergic alveolitis. Clin. Respir. J. 9, 39–44, doi: 10.1111/crj.12102 (2015). PubMed DOI
Costabel U. & Hunninghake G. W. ATS/ERS/WASOG statement on sarcoidosis. Sarcoidosis Statement Committee. American Thoracic Society. European Respiratory Society. World Association for Sarcoidosis and Other Granulomatous Disorders. Eur. Respir. J. 14, 735–737 (1999). PubMed
Schamberger A. C., Staab-Weijnitz C. A., Mise-Racek N. & Eickelberg O. Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci. Rep. 5, 8163, doi: 10.1038/srep08163 (2015). PubMed DOI PMC
Hruz T. et al.. Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 420747, doi: 10.1155/2008/420747 (2008). PubMed DOI PMC
Carmagnol F., Sinet P. M. & Jerome H. Selenium-dependent and non-selenium-dependent glutathione peroxidases in human tissue extracts. Biochim. Biophys. Acta 759, 49–57 (1983). PubMed