Open data set of live cyanobacterial cells imaged using an X-ray laser

. 2016 Aug 01 ; 3 () : 160058. [epub] 20160801

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., komentáře

Perzistentní odkaz   https://www.medvik.cz/link/pmid27479514

Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

1 N F N and Physics Department University of Rome 'Tor Vergata' Via della Ricerca Scientifica 1 00133 Rome Italy

ARC Centre of Excellence for Advanced Molecular Imaging School of Physics The University of Melbourne Victoria 3010 Australia

Arizona State University Physics Department PO Box 871504 Tempe Arizona 85287 1504 USA

Center for Free Electron Laser Science DESY Notkestrasse 85 22607 Hamburg Germany

Center for Technology Transfer and Innovation Jozef Stefan Institute Jamova cesta 39 SI 1000 Ljubljana Slovenia

Centre for BioImaging Sciences National University of Singapore 14 Science Drive 4 Blk S1 A Singapore 117546 Singapore

Department of Physics and Astronomy Uppsala University Lägerhyddsvägen 1 Box 516 SE 751 20 Uppsala Sweden

Deutsches Elektronen Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany

ELI beamlines Institute of Physics Academy of Sciences of the Czech Republic Na Slovance 2 18221 Prague Czech Republic

European XFEL Albert Einstein Ring 19 22761 Hamburg Germany

Institut für Optik und Atomare Physik Technische Universität Berlin Hardenbergstrasse 36 10623 Berlin Germany

Laboratory of Molecular Biophysics Department of Cell and Molecular Biology Uppsala University Husargatan 3 SE 751 24 Uppsala Sweden

LCLS SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 USA

Max Planck Advanced Study Group Center for Free Electron Laser Science Notkestrasse 85 22607 Hamburg Germany

Max Planck Institut für extraterrestrische Physik Giessenbachstrasse 85741 Garching Germany

Max Planck Institut für Kernphysik Saupfercheckweg 1 69117 Heidelberg Germany

Max Planck Institut für medizinische Forschung Jahnstr 29 69120 Heidelberg Germany

Max Planck Institut Halbleiterlabor Otto Hahn Ring 6 81739 München Germany

MRC Laboratory for Molecular Cell Biology UCL Gower St London WC1E 6BT UK

PNSensor GmbH Otto Hahn Ring 6 81739 Munich Germany

Synchrotron SOLEIL L'orme des Merisiers roundabout of St Aubin 91190 Saint Aubin France

Ultrafast Coherent Dynamics Group University Oldenburg Carl von Ossietzky Strasse 9 11 26129 Oldenburg Germany

University of Hamburg Notkestrasse 85 22607 Hamburg Germany

Komentář

PubMed

Zobrazit více v PubMed

van der Schot G. 2016. Coherent X-ray Imaging Data Bank. http://dx.doi.org/10.11577/1245696 DOI

Fairand B. P. Radiation Sterilization for Health Care Products: X-Ray, Gamma, and Electron Beam. 6, 6–7 (2001).

Game J. C., Williamson M. S. & Baccari C. X-ray survival characteristics and genetic analysis for nine Saccharomyces deletion mutants that show altered radiation sensitivity. Genetics 169, 51–63 (2005). PubMed PMC

Neutze R., Wouts R., van der Spoel D., Weckert E. & Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000). PubMed

Bergh M. et al. Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Q. Rev. Biophys. 41, 181–204 (2008). PubMed

Rath A. D. et al. Explosion dynamics of sucrose nanospheres monitored by time of flight spectrometry and coherent diffractive imaging at the split-and-delay beam line of the FLASH soft X-ray laser. Optics Express 22, 28914–28925 (2014). PubMed

Chapman H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006). PubMed

Chapman H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011). PubMed PMC

Van Der Schot G. et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications 6, 5704 (2015). PubMed

Hantke M. F. et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics 8, 943–949 (2014).

Seibert M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–U86 (2011). PubMed PMC

Ekeberg T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Physical Review Letters 114, 098102 (2015). PubMed

Komarek J., Kopecky J. & Cepak V. Generic characters of the simplest cyanoprokaryotes Cyanobium, Cyanobacterium and Synechococcus. Cryptogam. Algol. 20, 209–222 (1999).

Cohen-Bazire G. S. Fine-Structure of Cyanobacteria. Methods Enzymol. 167, 157–172 (1988).

Spence J. C. H. et al. Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction. Phil. Tran.s A Math. Phys. Eng. Sci 360, 875–895 (2002). PubMed

Raines K. S. et al. Three-dimensional structure determination from a single view. Nature 463, 214–217 (2010). PubMed

Strüder L. et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Methods Phys. Res., Sect. A 614, 483–496 (2010).

Bostedt C. et al. Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser. J. Phys. B 46, 164003 (2013).

Emma P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).

DePonte D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D: Appl. Phys. 41, 195505 (2008).

Bogan M. J. et al. Single particle X-ray diffractive imaging. Nano Lett. 8, 310–316 (2008). PubMed

Barty A. et al. A new resource for processing serial X-ray diffraction data. J. Appl. Cryst. 47, 1118–1131 (2014). PubMed PMC

Maia F. R. N. C. The Coherent X-ray Imaging Data Bank. Nat. Methods 9, 854–855 (2012). PubMed

The HDF Group. Hierarchical Data Format, version 5, 1997-2016. http://www.hdfgroup.org/HDF5/.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...