Open data set of live cyanobacterial cells imaged using an X-ray laser
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., komentáře
PubMed
27479514
PubMed Central
PMC4968219
DOI
10.1038/sdata.2016.58
PII: sdata201658
Knihovny.cz E-zdroje
- MeSH
- buňky MeSH
- časové faktory MeSH
- difrakce rentgenového záření * MeSH
- elektrony MeSH
- krystalografie rentgenová MeSH
- lasery * MeSH
- molekulární modely MeSH
- nanočástice MeSH
- proteiny MeSH
- pulz MeSH
- rentgenové záření MeSH
- sinice MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- proteiny MeSH
Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.
Arizona State University Physics Department PO Box 871504 Tempe Arizona 85287 1504 USA
Center for Free Electron Laser Science DESY Notkestrasse 85 22607 Hamburg Germany
Deutsches Elektronen Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
European XFEL Albert Einstein Ring 19 22761 Hamburg Germany
LCLS SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 USA
Max Planck Institut für extraterrestrische Physik Giessenbachstrasse 85741 Garching Germany
Max Planck Institut für Kernphysik Saupfercheckweg 1 69117 Heidelberg Germany
Max Planck Institut für medizinische Forschung Jahnstr 29 69120 Heidelberg Germany
Max Planck Institut Halbleiterlabor Otto Hahn Ring 6 81739 München Germany
MRC Laboratory for Molecular Cell Biology UCL Gower St London WC1E 6BT UK
PNSensor GmbH Otto Hahn Ring 6 81739 Munich Germany
Synchrotron SOLEIL L'orme des Merisiers roundabout of St Aubin 91190 Saint Aubin France
Zobrazit více v PubMed
van der Schot G. 2016. Coherent X-ray Imaging Data Bank. http://dx.doi.org/10.11577/1245696 DOI
Fairand B. P. Radiation Sterilization for Health Care Products: X-Ray, Gamma, and Electron Beam. 6, 6–7 (2001).
Game J. C., Williamson M. S. & Baccari C. X-ray survival characteristics and genetic analysis for nine Saccharomyces deletion mutants that show altered radiation sensitivity. Genetics 169, 51–63 (2005). PubMed PMC
Neutze R., Wouts R., van der Spoel D., Weckert E. & Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000). PubMed
Bergh M. et al. Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Q. Rev. Biophys. 41, 181–204 (2008). PubMed
Rath A. D. et al. Explosion dynamics of sucrose nanospheres monitored by time of flight spectrometry and coherent diffractive imaging at the split-and-delay beam line of the FLASH soft X-ray laser. Optics Express 22, 28914–28925 (2014). PubMed
Chapman H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006). PubMed
Chapman H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011). PubMed PMC
Van Der Schot G. et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications 6, 5704 (2015). PubMed
Hantke M. F. et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics 8, 943–949 (2014).
Seibert M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–U86 (2011). PubMed PMC
Ekeberg T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Physical Review Letters 114, 098102 (2015). PubMed
Komarek J., Kopecky J. & Cepak V. Generic characters of the simplest cyanoprokaryotes Cyanobium, Cyanobacterium and Synechococcus. Cryptogam. Algol. 20, 209–222 (1999).
Cohen-Bazire G. S. Fine-Structure of Cyanobacteria. Methods Enzymol. 167, 157–172 (1988).
Spence J. C. H. et al. Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction. Phil. Tran.s A Math. Phys. Eng. Sci 360, 875–895 (2002). PubMed
Raines K. S. et al. Three-dimensional structure determination from a single view. Nature 463, 214–217 (2010). PubMed
Strüder L. et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Methods Phys. Res., Sect. A 614, 483–496 (2010).
Bostedt C. et al. Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser. J. Phys. B 46, 164003 (2013).
Emma P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).
DePonte D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D: Appl. Phys. 41, 195505 (2008).
Bogan M. J. et al. Single particle X-ray diffractive imaging. Nano Lett. 8, 310–316 (2008). PubMed
Barty A. et al. A new resource for processing serial X-ray diffraction data. J. Appl. Cryst. 47, 1118–1131 (2014). PubMed PMC
Maia F. R. N. C. The Coherent X-ray Imaging Data Bank. Nat. Methods 9, 854–855 (2012). PubMed
The HDF Group. Hierarchical Data Format, version 5, 1997-2016. http://www.hdfgroup.org/HDF5/.