RECQ5 helicase promotes resolution of conflicts between replication and transcription in human cells
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
27502483
PubMed Central
PMC4987291
DOI
10.1083/jcb.201507099
PII: jcb.201507099
Knihovny.cz E-resources
- MeSH
- Models, Biological MeSH
- DNA-Directed RNA Polymerases metabolism MeSH
- DNA-Binding Proteins metabolism MeSH
- DNA-Directed DNA Polymerase metabolism MeSH
- Transcription Elongation, Genetic MeSH
- Stress, Physiological genetics MeSH
- Transcription, Genetic * MeSH
- HEK293 Cells MeSH
- RecQ Helicases metabolism MeSH
- Protein Interaction Domains and Motifs MeSH
- Humans MeSH
- Multienzyme Complexes metabolism MeSH
- Open Reading Frames genetics MeSH
- RNA Precursors genetics MeSH
- Proliferating Cell Nuclear Antigen metabolism MeSH
- BRCA1 Protein metabolism MeSH
- Rad51 Recombinase metabolism MeSH
- DNA Replication * MeSH
- DNA, Ribosomal metabolism MeSH
- Ubiquitination MeSH
- Ubiquitin-Protein Ligases metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA-Directed RNA Polymerases MeSH
- DNA synthesome MeSH Browser
- DNA-Binding Proteins MeSH
- DNA-Directed DNA Polymerase MeSH
- RecQ Helicases MeSH
- Multienzyme Complexes MeSH
- RNA Precursors MeSH
- Proliferating Cell Nuclear Antigen MeSH
- BRCA1 Protein MeSH
- RAD18 protein, human MeSH Browser
- RECQL5 protein, human MeSH Browser
- Rad51 Recombinase MeSH
- DNA, Ribosomal MeSH
- Ubiquitin-Protein Ligases MeSH
Collisions between replication and transcription machineries represent a significant source of genomic instability. RECQ5 DNA helicase binds to RNA-polymerase (RNAP) II during transcription elongation and suppresses transcription-associated genomic instability. Here, we show that RECQ5 also associates with RNAPI and enforces the stability of ribosomal DNA arrays. We demonstrate that RECQ5 associates with transcription complexes in DNA replication foci and counteracts replication fork stalling in RNAPI- and RNAPII-transcribed genes, suggesting that RECQ5 exerts its genome-stabilizing effect by acting at sites of replication-transcription collisions. Moreover, RECQ5-deficient cells accumulate RAD18 foci and BRCA1-dependent RAD51 foci that are both formed at sites of interference between replication and transcription and likely represent unresolved replication intermediates. Finally, we provide evidence for a novel mechanism of resolution of replication-transcription collisions wherein the interaction between RECQ5 and proliferating cell nuclear antigen (PCNA) promotes RAD18-dependent PCNA ubiquitination and the helicase activity of RECQ5 promotes the processing of replication intermediates.
See more in PubMed
Azvolinsky A., Giresi P.G., Lieb J.D., and Zakian V.A.. 2009. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell. 34:722–734. 10.1016/j.molcel.2009.05.022 PubMed DOI PMC
Barlow J.H., Faryabi R.B., Callén E., Wong N., Malhowski A., Chen H.T., Gutierrez-Cruz G., Sun H.W., McKinnon P., Wright G., et al. . 2013. Identification of early replicating fragile sites that contribute to genome instability. Cell. 152:620–632. 10.1016/j.cell.2013.01.006 PubMed DOI PMC
Boubakri H., de Septenville A.L., Viguera E., and Michel B.. 2010. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 29:145–157. 10.1038/emboj.2009.308 PubMed DOI PMC
Croteau D.L., Popuri V., Opresko P.L., and Bohr V.A.. 2014. Human RecQ helicases in DNA repair, recombination, and replication. Annu. Rev. Biochem. 83:519–552. 10.1146/annurev-biochem-060713-035428 PubMed DOI PMC
Durkin S.G., and Glover T.W.. 2007. Chromosome fragile sites. Annu. Rev. Genet. 41:169–192. 10.1146/annurev.genet.41.042007.165900 PubMed DOI
Elías-Arnanz M., and Salas M.. 1999. Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation. EMBO J. 18:5675–5682. 10.1093/emboj/18.20.5675 PubMed DOI PMC
Felipe-Abrio I., Lafuente-Barquero J., García-Rubio M.L., and Aguilera A.. 2015. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. EMBO J. 34:236–250. 10.15252/embj.201488544 PubMed DOI PMC
Garcia P.L., Liu Y., Jiricny J., West S.C., and Janscak P.. 2004. Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J. 23:2882–2891. 10.1038/sj.emboj.7600301 PubMed DOI PMC
Ghodgaonkar M.M., Kehl P., Ventura I., Hu L., Bignami M., and Jiricny J.. 2014. Phenotypic characterization of missense polymerase-δ mutations using an inducible protein-replacement system. Nat. Commun. 5:4990 10.1038/ncomms5990 PubMed DOI
Grummt I. 2003. Life on a planet of its own: Regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17:1691–1702. 10.1101/gad.1098503R PubMed DOI
Helmrich A., Ballarino M., and Tora L.. 2011. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell. 44:966–977. 10.1016/j.molcel.2011.10.013 PubMed DOI
Helmrich A., Ballarino M., Nudler E., and Tora L.. 2013. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20:412–418. 10.1038/nsmb.2543 PubMed DOI
Hu Y., Raynard S., Sehorn M.G., Lu X., Bussen W., Zheng L., Stark J.M., Barnes E.L., Chi P., Janscak P., et al. . 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 21:3073–3084. 10.1101/gad.1609107 PubMed DOI PMC
Izumikawa K., Yanagida M., Hayano T., Tachikawa H., Komatsu W., Shimamoto A., Futami K., Furuichi Y., Shinkawa T., Yamauchi Y., et al. . 2008. Association of human DNA helicase RecQ5beta with RNA polymerase II and its possible role in transcription. Biochem. J. 413:505–516. 10.1042/BJ20071392 PubMed DOI
Jones R.M., Mortusewicz O., Afzal I., Lorvellec M., García P., Helleday T., and Petermann E.. 2013. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene. 32:3744–3753. 10.1038/onc.2012.387 PubMed DOI
Kanagaraj R., Saydam N., Garcia P.L., Zheng L., and Janscak P.. 2006. Human RECQ5beta helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res. 34:5217–5231. 10.1093/nar/gkl677 PubMed DOI PMC
Kanagaraj R., Huehn D., MacKellar A., Menigatti M., Zheng L., Urban V., Shevelev I., Greenleaf A.L., and Janscak P.. 2010. RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcription. Nucleic Acids Res. 38:8131–8140. 10.1093/nar/gkq697 PubMed DOI PMC
Krum S.A., Miranda G.A., Lin C., and Lane T.F.. 2003. BRCA1 associates with processive RNA polymerase II. J. Biol. Chem. 278:52012–52020. 10.1074/jbc.M308418200 PubMed DOI
Li J., Santoro R., Koberna K., and Grummt I.. 2005. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24:120–127. 10.1038/sj.emboj.7600492 PubMed DOI PMC
Li M., Xu X., and Liu Y.. 2011. The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability. Mol. Cell. Biol. 31:2090–2099. 10.1128/MCB.01137-10 PubMed DOI PMC
Little R.D., Platt T.H., and Schildkraut C.L.. 1993. Initiation and termination of DNA replication in human rRNA genes. Mol. Cell. Biol. 13:6600–6613. 10.1128/MCB.13.10.6600 PubMed DOI PMC
Mailand N., Bekker-Jensen S., Faustrup H., Melander F., Bartek J., Lukas C., and Lukas J.. 2007. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 131:887–900. 10.1016/j.cell.2007.09.040 PubMed DOI
Mórocz M., Gali H., Raskó I., Downes C.S., and Haracska L.. 2013. Single cell analysis of human RAD18-dependent DNA post-replication repair by alkaline bromodeoxyuridine comet assay. PLoS One. 8:e70391 10.1371/journal.pone.0070391 PubMed DOI PMC
Nejepinska J., Malik R., Filkowski J., Flemr M., Filipowicz W., and Svoboda P.. 2012. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res. 40:399–413. 10.1093/nar/gkr702 PubMed DOI PMC
Niimi A., Brown S., Sabbioneda S., Kannouche P.L., Scott A., Yasui A., Green C.M., and Lehmann A.R.. 2008. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl. Acad. Sci. USA. 105:16125–16130. 10.1073/pnas.0802727105 PubMed DOI PMC
Poveda A.M., Le Clech M., and Pasero P.. 2010. Transcription and replication: breaking the rules of the road causes genomic instability. Transcription. 1:99–102. 10.4161/trns.1.2.12665 PubMed DOI PMC
Sabouri N., McDonald K.R., Webb C.J., Cristea I.M., and Zakian V.A.. 2012. DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev. 26:581–593. 10.1101/gad.184697.111 PubMed DOI PMC
Saponaro M., Kantidakis T., Mitter R., Kelly G.P., Heron M., Williams H., Söding J., Stewart A., and Svejstrup J.Q.. 2014. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell. 157:1037–1049. 10.1016/j.cell.2014.03.048 PubMed DOI PMC
Schlacher K., Wu H., and Jasin M.. 2012. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 22:106–116. 10.1016/j.ccr.2012.05.015 PubMed DOI PMC
Schwendener S., Raynard S., Paliwal S., Cheng A., Kanagaraj R., Shevelev I., Stark J.M., Sung P., and Janscak P.. 2010. Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity. J. Biol. Chem. 285:15739–15745. 10.1074/jbc.M110.110478 PubMed DOI PMC
Scully R., Chen J., Plug A., Xiao Y., Weaver D., Feunteun J., Ashley T., and Livingston D.M.. 1997. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 88:265–275. 10.1016/S0092-8674(00)81847-4 PubMed DOI
Sporbert A., Gahl A., Ankerhold R., Leonhardt H., and Cardoso M.C.. 2002. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell. 10:1355–1365. 10.1016/S1097-2765(02)00729-3 PubMed DOI
Takeuchi Y., Horiuchi T., and Kobayashi T.. 2003. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17:1497–1506. 10.1101/gad.1085403 PubMed DOI PMC
Tsuji Y., Watanabe K., Araki K., Shinohara M., Yamagata Y., Tsurimoto T., Hanaoka F., Yamamura K., Yamaizumi M., and Tateishi S.. 2008. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells. 13:343–354. 10.1111/j.1365-2443.2008.01176.x PubMed DOI
Willis N.A., Chandramouly G., Huang B., Kwok A., Follonier C., Deng C., and Scully R.. 2014. BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature. 510:556–559. 10.1038/nature13295 PubMed DOI PMC
Wilson T.E., Arlt M.F., Park S.H., Rajendran S., Paulsen M., Ljungman M., and Glover T.W.. 2015. Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res. 25:189–200. 10.1101/gr.177121.114 PubMed DOI PMC
Yu C., Gan H., Han J., Zhou Z.X., Jia S., Chabes A., Farrugia G., Ordog T., and Zhang Z.. 2014. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell. 56:551–563. 10.1016/j.molcel.2014.09.017 PubMed DOI PMC
RAD51 Inhibition Induces R-Loop Formation in Early G1 Phase of the Cell Cycle
RECQ5: A Mysterious Helicase at the Interface of DNA Replication and Transcription