• This record comes from PubMed

RECQ5 helicase promotes resolution of conflicts between replication and transcription in human cells

. 2016 Aug 15 ; 214 (4) : 401-15. [epub] 20160808

Language English Country United States Media print-electronic

Document type Journal Article

Collisions between replication and transcription machineries represent a significant source of genomic instability. RECQ5 DNA helicase binds to RNA-polymerase (RNAP) II during transcription elongation and suppresses transcription-associated genomic instability. Here, we show that RECQ5 also associates with RNAPI and enforces the stability of ribosomal DNA arrays. We demonstrate that RECQ5 associates with transcription complexes in DNA replication foci and counteracts replication fork stalling in RNAPI- and RNAPII-transcribed genes, suggesting that RECQ5 exerts its genome-stabilizing effect by acting at sites of replication-transcription collisions. Moreover, RECQ5-deficient cells accumulate RAD18 foci and BRCA1-dependent RAD51 foci that are both formed at sites of interference between replication and transcription and likely represent unresolved replication intermediates. Finally, we provide evidence for a novel mechanism of resolution of replication-transcription collisions wherein the interaction between RECQ5 and proliferating cell nuclear antigen (PCNA) promotes RAD18-dependent PCNA ubiquitination and the helicase activity of RECQ5 promotes the processing of replication intermediates.

See more in PubMed

Azvolinsky A., Giresi P.G., Lieb J.D., and Zakian V.A.. 2009. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell. 34:722–734. 10.1016/j.molcel.2009.05.022 PubMed DOI PMC

Barlow J.H., Faryabi R.B., Callén E., Wong N., Malhowski A., Chen H.T., Gutierrez-Cruz G., Sun H.W., McKinnon P., Wright G., et al. . 2013. Identification of early replicating fragile sites that contribute to genome instability. Cell. 152:620–632. 10.1016/j.cell.2013.01.006 PubMed DOI PMC

Boubakri H., de Septenville A.L., Viguera E., and Michel B.. 2010. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 29:145–157. 10.1038/emboj.2009.308 PubMed DOI PMC

Croteau D.L., Popuri V., Opresko P.L., and Bohr V.A.. 2014. Human RecQ helicases in DNA repair, recombination, and replication. Annu. Rev. Biochem. 83:519–552. 10.1146/annurev-biochem-060713-035428 PubMed DOI PMC

Durkin S.G., and Glover T.W.. 2007. Chromosome fragile sites. Annu. Rev. Genet. 41:169–192. 10.1146/annurev.genet.41.042007.165900 PubMed DOI

Elías-Arnanz M., and Salas M.. 1999. Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation. EMBO J. 18:5675–5682. 10.1093/emboj/18.20.5675 PubMed DOI PMC

Felipe-Abrio I., Lafuente-Barquero J., García-Rubio M.L., and Aguilera A.. 2015. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. EMBO J. 34:236–250. 10.15252/embj.201488544 PubMed DOI PMC

Garcia P.L., Liu Y., Jiricny J., West S.C., and Janscak P.. 2004. Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J. 23:2882–2891. 10.1038/sj.emboj.7600301 PubMed DOI PMC

Ghodgaonkar M.M., Kehl P., Ventura I., Hu L., Bignami M., and Jiricny J.. 2014. Phenotypic characterization of missense polymerase-δ mutations using an inducible protein-replacement system. Nat. Commun. 5:4990 10.1038/ncomms5990 PubMed DOI

Grummt I. 2003. Life on a planet of its own: Regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17:1691–1702. 10.1101/gad.1098503R PubMed DOI

Helmrich A., Ballarino M., and Tora L.. 2011. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell. 44:966–977. 10.1016/j.molcel.2011.10.013 PubMed DOI

Helmrich A., Ballarino M., Nudler E., and Tora L.. 2013. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20:412–418. 10.1038/nsmb.2543 PubMed DOI

Hu Y., Raynard S., Sehorn M.G., Lu X., Bussen W., Zheng L., Stark J.M., Barnes E.L., Chi P., Janscak P., et al. . 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 21:3073–3084. 10.1101/gad.1609107 PubMed DOI PMC

Izumikawa K., Yanagida M., Hayano T., Tachikawa H., Komatsu W., Shimamoto A., Futami K., Furuichi Y., Shinkawa T., Yamauchi Y., et al. . 2008. Association of human DNA helicase RecQ5beta with RNA polymerase II and its possible role in transcription. Biochem. J. 413:505–516. 10.1042/BJ20071392 PubMed DOI

Jones R.M., Mortusewicz O., Afzal I., Lorvellec M., García P., Helleday T., and Petermann E.. 2013. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene. 32:3744–3753. 10.1038/onc.2012.387 PubMed DOI

Kanagaraj R., Saydam N., Garcia P.L., Zheng L., and Janscak P.. 2006. Human RECQ5beta helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res. 34:5217–5231. 10.1093/nar/gkl677 PubMed DOI PMC

Kanagaraj R., Huehn D., MacKellar A., Menigatti M., Zheng L., Urban V., Shevelev I., Greenleaf A.L., and Janscak P.. 2010. RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcription. Nucleic Acids Res. 38:8131–8140. 10.1093/nar/gkq697 PubMed DOI PMC

Krum S.A., Miranda G.A., Lin C., and Lane T.F.. 2003. BRCA1 associates with processive RNA polymerase II. J. Biol. Chem. 278:52012–52020. 10.1074/jbc.M308418200 PubMed DOI

Li J., Santoro R., Koberna K., and Grummt I.. 2005. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24:120–127. 10.1038/sj.emboj.7600492 PubMed DOI PMC

Li M., Xu X., and Liu Y.. 2011. The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability. Mol. Cell. Biol. 31:2090–2099. 10.1128/MCB.01137-10 PubMed DOI PMC

Little R.D., Platt T.H., and Schildkraut C.L.. 1993. Initiation and termination of DNA replication in human rRNA genes. Mol. Cell. Biol. 13:6600–6613. 10.1128/MCB.13.10.6600 PubMed DOI PMC

Mailand N., Bekker-Jensen S., Faustrup H., Melander F., Bartek J., Lukas C., and Lukas J.. 2007. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 131:887–900. 10.1016/j.cell.2007.09.040 PubMed DOI

Mórocz M., Gali H., Raskó I., Downes C.S., and Haracska L.. 2013. Single cell analysis of human RAD18-dependent DNA post-replication repair by alkaline bromodeoxyuridine comet assay. PLoS One. 8:e70391 10.1371/journal.pone.0070391 PubMed DOI PMC

Nejepinska J., Malik R., Filkowski J., Flemr M., Filipowicz W., and Svoboda P.. 2012. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res. 40:399–413. 10.1093/nar/gkr702 PubMed DOI PMC

Niimi A., Brown S., Sabbioneda S., Kannouche P.L., Scott A., Yasui A., Green C.M., and Lehmann A.R.. 2008. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl. Acad. Sci. USA. 105:16125–16130. 10.1073/pnas.0802727105 PubMed DOI PMC

Poveda A.M., Le Clech M., and Pasero P.. 2010. Transcription and replication: breaking the rules of the road causes genomic instability. Transcription. 1:99–102. 10.4161/trns.1.2.12665 PubMed DOI PMC

Sabouri N., McDonald K.R., Webb C.J., Cristea I.M., and Zakian V.A.. 2012. DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev. 26:581–593. 10.1101/gad.184697.111 PubMed DOI PMC

Saponaro M., Kantidakis T., Mitter R., Kelly G.P., Heron M., Williams H., Söding J., Stewart A., and Svejstrup J.Q.. 2014. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell. 157:1037–1049. 10.1016/j.cell.2014.03.048 PubMed DOI PMC

Schlacher K., Wu H., and Jasin M.. 2012. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 22:106–116. 10.1016/j.ccr.2012.05.015 PubMed DOI PMC

Schwendener S., Raynard S., Paliwal S., Cheng A., Kanagaraj R., Shevelev I., Stark J.M., Sung P., and Janscak P.. 2010. Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity. J. Biol. Chem. 285:15739–15745. 10.1074/jbc.M110.110478 PubMed DOI PMC

Scully R., Chen J., Plug A., Xiao Y., Weaver D., Feunteun J., Ashley T., and Livingston D.M.. 1997. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 88:265–275. 10.1016/S0092-8674(00)81847-4 PubMed DOI

Sporbert A., Gahl A., Ankerhold R., Leonhardt H., and Cardoso M.C.. 2002. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell. 10:1355–1365. 10.1016/S1097-2765(02)00729-3 PubMed DOI

Takeuchi Y., Horiuchi T., and Kobayashi T.. 2003. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17:1497–1506. 10.1101/gad.1085403 PubMed DOI PMC

Tsuji Y., Watanabe K., Araki K., Shinohara M., Yamagata Y., Tsurimoto T., Hanaoka F., Yamamura K., Yamaizumi M., and Tateishi S.. 2008. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells. 13:343–354. 10.1111/j.1365-2443.2008.01176.x PubMed DOI

Willis N.A., Chandramouly G., Huang B., Kwok A., Follonier C., Deng C., and Scully R.. 2014. BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature. 510:556–559. 10.1038/nature13295 PubMed DOI PMC

Wilson T.E., Arlt M.F., Park S.H., Rajendran S., Paulsen M., Ljungman M., and Glover T.W.. 2015. Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res. 25:189–200. 10.1101/gr.177121.114 PubMed DOI PMC

Yu C., Gan H., Han J., Zhou Z.X., Jia S., Chabes A., Farrugia G., Ordog T., and Zhang Z.. 2014. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell. 56:551–563. 10.1016/j.molcel.2014.09.017 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...