Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
27556444
PubMed Central
PMC6273969
DOI
10.3390/molecules21081102
PII: molecules21081102
Knihovny.cz E-resources
- Keywords
- ">d-xylose, Nafion NR50, biphasic system, furfural, microwave-assisted dehydration, xylan,
- MeSH
- Furaldehyde chemical synthesis chemistry MeSH
- Sodium Chloride chemistry MeSH
- Fluorocarbon Polymers chemistry MeSH
- Catalysis MeSH
- Microwaves MeSH
- Molecular Structure MeSH
- Water chemistry MeSH
- Hot Temperature MeSH
- Xylans chemistry MeSH
- Xylose chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Furaldehyde MeSH
- Sodium Chloride MeSH
- Fluorocarbon Polymers MeSH
- perfluorosulfonic acid MeSH Browser
- Water MeSH
- Xylans MeSH
- Xylose MeSH
Pentose dehydration and direct transformation of xylan into furfural were performed in a water-cyclopentyl methyl ether (CPME) biphasic system under microwave irradiation. Heated up between 170 and 190 °C in the presence of Nafion NR50 and NaCl, d-xylose, l-arabinose and xylan gave furfural with maximum yields of 80%, 42% and 55%, respectively. The influence of temperature and reaction time on the reaction kinetics was discussed. This study was also completed by the survey of different reactant ratios, such as organic layer-water or catalyst-inorganic salt ratios. The exchange between proton and cation induced by an excess of NaCl was monitored, and a synergetic effect between the remaining protons and the released HCl was also discovered.
Department of Chemistry Faculty of Technology 760 01 Zlin Czech Republic
Université de Technologie de Compiègne CS 60319 60203 Compiègne Cedex France
See more in PubMed
Hoydonckx H.E., Van Rhijn W.M., Van Rhijn W., De Vos D.E., Jacobs P.A. Ullmann’s Encyclopedia of Industrial Chemistry. Volume 16. Wiley-VCH Verlag GmbH & Co. KgaA; Weinheim, Germany: 2000. Furfural and derivatives; pp. 285–313.
Kamireddy S.R., Kozliak E.I., Tucker M., Ji Y. Kinetic features of xylan de-polymerization in production of xylose monomer and furfural during acid pretreatment for kenaf, foragesorghums and sunn hemp feedstocks. Int. Agric. Biol. Eng. 2014;7:86–98.
Marcotullio G., De Jong W. Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions. Green Chem. 2010;12:1739–1746. doi: 10.1039/b927424c. DOI
Fulmer E.I., Christensen L.M., Hixon R.M., Foster R.L. The production of furfural from xylose solutions by means of hydrochloric acid-sodium chloride systems. J. Phys. Chem. 1936;40:133–141. doi: 10.1021/j150370a017. DOI
Rong C., Ding X., Zhu Y., Li Y., Wang L., Qu Y., Ma X., Wang Z. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acide and inorganic salts. Carbohydr. Res. 2012;350:77–80. doi: 10.1016/j.carres.2011.11.023. PubMed DOI
Yemis O., Mazza G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 2011;102:7371–7378. doi: 10.1016/j.biortech.2011.04.050. PubMed DOI
Takagaki J., Ohara M., Nishimura S., Ebitani K. One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts. Chem. Lett. 2010;39:838–840. doi: 10.1246/cl.2010.838. DOI
Agirrezahal-Telleria I., Larreategui A., Requies J., Guemez M.B., Arias P.L. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour. Technol. 2011;102:7478–7485. doi: 10.1016/j.biortech.2011.05.015. PubMed DOI
Aellig C., Scholz D., Dapsens P.Y., Mondelli C., Perez Ramirez J. When catalyst meets reactor: Continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catal. Sci. Technol. 2015;5:142–149. doi: 10.1039/C4CY00973H. DOI
Upare P.P., Hwang D.W., Hwang Y.K., Lee V.H., Hong D.Y., Chang J.S. An integrated process for the production of 2,5-dimethylfuran from fructose. Green Chem. 2015;17:3310–3313. doi: 10.1039/C5GC00281H. DOI
Dias A.S., Lima S., Carriazo D., Rives V., Pillinger M., Valente A.A. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of d-xylose into furfural. J. Catal. 2006;244:230–237. doi: 10.1016/j.jcat.2006.09.010. DOI
Tureja J., Nishimura S., Ebitani K. One-pot synthesis of furans from various saccharides using combination of solid acid and base catalysts. Bull. Chem. Soc. Jpn. 2012;85:275–281.
Moreau C., Durand R., Peyron D., Duhamet J., Rivalier P. Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind. Crop Prod. 1998;7:95–99. doi: 10.1016/S0926-6690(97)00037-X. DOI
Dias A.S., Lima S., Pillinger M., Valente A.A. Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural. Carbohydr. Res. 2006;341:2946–2953. doi: 10.1016/j.carres.2006.10.013. PubMed DOI
Lam E., Hajid E., Leung A.C.W., Chong J.H., Hahnoud K.A., Luong J.H.T. Synthesis of furfural from xylose by heterogeneous and reusable Nafion catalysts. ChemSusChem. 2011;4:535–541. doi: 10.1002/cssc.201100023. PubMed DOI
Kim S.J., Dwiatmoko A.A., Choi J.W., Suh Y.W., Suh D.J., Oh M. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour. Technol. 2010;101:8273–8279. doi: 10.1016/j.biortech.2010.06.047. PubMed DOI
Watanabe K., Yamagiwa N., Torisawa Y. Cyclopentyl methyl ether as a new and alternative process solvent. Org. Process Res. Dev. 2007;11:251–258. doi: 10.1021/op0680136. DOI
Weingarten R., Cho J., Conner W.C., Jr., Huber G.W. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem. 2010;12:1423–1429. doi: 10.1039/c003459b. DOI
Yang W., Li P., Bo D., Chang H., Wang X., Zhu T. Optimization of furfural production from d-xylose with formic acid as catalyst in a reactive extraction system. Bioresour. Technol. 2013;133:361–369. doi: 10.1016/j.biortech.2013.01.127. PubMed DOI
Amiri H., Karimi K., Roodpeyma S. Production of furans from rice straw by single-phase and biphasic systems. Carbohydr. Res. 2010;345:2133–2138. doi: 10.1016/j.carres.2010.07.032. PubMed DOI
Chheda J.N., Roman-Leshkov Y., Dumesic J.A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived monoa and poly-saccharides. Green Chem. 2007;9:342–350. doi: 10.1039/B611568C. DOI
Weingarten R., Tompsett G.A., Conner W.C., Jr., Huber G.W. Design of solid acid catalysts for aqueous phase dehydration of carbohydrates. The role of Lewis and Bronsted acid sites. J. Catal. 2011;279:174–182. doi: 10.1016/j.jcat.2011.01.013. DOI
Le Guenic S., Delbecq F., Ceballos C., Len C. Microwave-assisted dehydration of d-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic system. J. Mol. Catal. A Chem. 2015;410:1–7. doi: 10.1016/j.molcata.2015.08.019. DOI
Lopez D.E., Goodwin J.G., Jr., Bruce D.A. Transesterification of triacetin with methanol on Nafion acid resins. J. Catal. 2007;245:381–391. doi: 10.1016/j.jcat.2006.10.027. DOI
Danon B., Hongsiri W., van der Aa L., de Jong W. Kinetic study on homogeneous catalyzed xylose dehydration to furfural in the presence of arabinose and glucose. Biomass Bioenergy. 2014;66:364–370. doi: 10.1016/j.biombioe.2014.04.007. DOI
Kootstra A.M.J., Mosier N.S., Scott E.L., Beeftink H.H., Sanders J.P.M. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochem. Eng. J. 2009;43:92–97. doi: 10.1016/j.bej.2008.09.004. DOI
Gairola K., Smirnova I. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2 kinetics and application to biomass hydrolysates. Bioresour. Technol. 2012;123:592–598. doi: 10.1016/j.biortech.2012.07.031. PubMed DOI
Garrett E.R., Dvorchik B.H. Kinetics and mechanisms of the acid degradation of the aldopentose to furfural. J. Pharm. Sci. 1969;58:813–820. doi: 10.1002/jps.2600580703. PubMed DOI
Sturm G.S.J., Verweij M.D., van Gerven T., Stankiewicz A.I., Staefanidis G.D. On the effect of resonant microwave fields on temperature distribution in time and space. Int. J. Heat Mass Transf. 2012;55:3800–3811. doi: 10.1016/j.ijheatmasstransfer.2012.02.065. DOI
Xiouras C., Radacsi N., Sturm G., Stefanidis G.D. Furfural synthesis in the presence of sodium chloride: Microwaves versus conventional heating. ChemSusChem. 2016 doi: 10.1002/cssc.201600446. PubMed DOI