• This record comes from PubMed

Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction

. 2016 Aug 22 ; 21 (8) : . [epub] 20160822

Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 27556444
PubMed Central PMC6273969
DOI 10.3390/molecules21081102
PII: molecules21081102
Knihovny.cz E-resources

Pentose dehydration and direct transformation of xylan into furfural were performed in a water-cyclopentyl methyl ether (CPME) biphasic system under microwave irradiation. Heated up between 170 and 190 °C in the presence of Nafion NR50 and NaCl, d-xylose, l-arabinose and xylan gave furfural with maximum yields of 80%, 42% and 55%, respectively. The influence of temperature and reaction time on the reaction kinetics was discussed. This study was also completed by the survey of different reactant ratios, such as organic layer-water or catalyst-inorganic salt ratios. The exchange between proton and cation induced by an excess of NaCl was monitored, and a synergetic effect between the remaining protons and the released HCl was also discovered.

See more in PubMed

Hoydonckx H.E., Van Rhijn W.M., Van Rhijn W., De Vos D.E., Jacobs P.A. Ullmann’s Encyclopedia of Industrial Chemistry. Volume 16. Wiley-VCH Verlag GmbH & Co. KgaA; Weinheim, Germany: 2000. Furfural and derivatives; pp. 285–313.

Kamireddy S.R., Kozliak E.I., Tucker M., Ji Y. Kinetic features of xylan de-polymerization in production of xylose monomer and furfural during acid pretreatment for kenaf, foragesorghums and sunn hemp feedstocks. Int. Agric. Biol. Eng. 2014;7:86–98.

Marcotullio G., De Jong W. Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions. Green Chem. 2010;12:1739–1746. doi: 10.1039/b927424c. DOI

Fulmer E.I., Christensen L.M., Hixon R.M., Foster R.L. The production of furfural from xylose solutions by means of hydrochloric acid-sodium chloride systems. J. Phys. Chem. 1936;40:133–141. doi: 10.1021/j150370a017. DOI

Rong C., Ding X., Zhu Y., Li Y., Wang L., Qu Y., Ma X., Wang Z. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acide and inorganic salts. Carbohydr. Res. 2012;350:77–80. doi: 10.1016/j.carres.2011.11.023. PubMed DOI

Yemis O., Mazza G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 2011;102:7371–7378. doi: 10.1016/j.biortech.2011.04.050. PubMed DOI

Takagaki J., Ohara M., Nishimura S., Ebitani K. One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts. Chem. Lett. 2010;39:838–840. doi: 10.1246/cl.2010.838. DOI

Agirrezahal-Telleria I., Larreategui A., Requies J., Guemez M.B., Arias P.L. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour. Technol. 2011;102:7478–7485. doi: 10.1016/j.biortech.2011.05.015. PubMed DOI

Aellig C., Scholz D., Dapsens P.Y., Mondelli C., Perez Ramirez J. When catalyst meets reactor: Continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catal. Sci. Technol. 2015;5:142–149. doi: 10.1039/C4CY00973H. DOI

Upare P.P., Hwang D.W., Hwang Y.K., Lee V.H., Hong D.Y., Chang J.S. An integrated process for the production of 2,5-dimethylfuran from fructose. Green Chem. 2015;17:3310–3313. doi: 10.1039/C5GC00281H. DOI

Dias A.S., Lima S., Carriazo D., Rives V., Pillinger M., Valente A.A. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of d-xylose into furfural. J. Catal. 2006;244:230–237. doi: 10.1016/j.jcat.2006.09.010. DOI

Tureja J., Nishimura S., Ebitani K. One-pot synthesis of furans from various saccharides using combination of solid acid and base catalysts. Bull. Chem. Soc. Jpn. 2012;85:275–281.

Moreau C., Durand R., Peyron D., Duhamet J., Rivalier P. Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind. Crop Prod. 1998;7:95–99. doi: 10.1016/S0926-6690(97)00037-X. DOI

Dias A.S., Lima S., Pillinger M., Valente A.A. Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural. Carbohydr. Res. 2006;341:2946–2953. doi: 10.1016/j.carres.2006.10.013. PubMed DOI

Lam E., Hajid E., Leung A.C.W., Chong J.H., Hahnoud K.A., Luong J.H.T. Synthesis of furfural from xylose by heterogeneous and reusable Nafion catalysts. ChemSusChem. 2011;4:535–541. doi: 10.1002/cssc.201100023. PubMed DOI

Kim S.J., Dwiatmoko A.A., Choi J.W., Suh Y.W., Suh D.J., Oh M. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour. Technol. 2010;101:8273–8279. doi: 10.1016/j.biortech.2010.06.047. PubMed DOI

Watanabe K., Yamagiwa N., Torisawa Y. Cyclopentyl methyl ether as a new and alternative process solvent. Org. Process Res. Dev. 2007;11:251–258. doi: 10.1021/op0680136. DOI

Weingarten R., Cho J., Conner W.C., Jr., Huber G.W. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem. 2010;12:1423–1429. doi: 10.1039/c003459b. DOI

Yang W., Li P., Bo D., Chang H., Wang X., Zhu T. Optimization of furfural production from d-xylose with formic acid as catalyst in a reactive extraction system. Bioresour. Technol. 2013;133:361–369. doi: 10.1016/j.biortech.2013.01.127. PubMed DOI

Amiri H., Karimi K., Roodpeyma S. Production of furans from rice straw by single-phase and biphasic systems. Carbohydr. Res. 2010;345:2133–2138. doi: 10.1016/j.carres.2010.07.032. PubMed DOI

Chheda J.N., Roman-Leshkov Y., Dumesic J.A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived monoa and poly-saccharides. Green Chem. 2007;9:342–350. doi: 10.1039/B611568C. DOI

Weingarten R., Tompsett G.A., Conner W.C., Jr., Huber G.W. Design of solid acid catalysts for aqueous phase dehydration of carbohydrates. The role of Lewis and Bronsted acid sites. J. Catal. 2011;279:174–182. doi: 10.1016/j.jcat.2011.01.013. DOI

Le Guenic S., Delbecq F., Ceballos C., Len C. Microwave-assisted dehydration of d-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic system. J. Mol. Catal. A Chem. 2015;410:1–7. doi: 10.1016/j.molcata.2015.08.019. DOI

Lopez D.E., Goodwin J.G., Jr., Bruce D.A. Transesterification of triacetin with methanol on Nafion acid resins. J. Catal. 2007;245:381–391. doi: 10.1016/j.jcat.2006.10.027. DOI

Danon B., Hongsiri W., van der Aa L., de Jong W. Kinetic study on homogeneous catalyzed xylose dehydration to furfural in the presence of arabinose and glucose. Biomass Bioenergy. 2014;66:364–370. doi: 10.1016/j.biombioe.2014.04.007. DOI

Kootstra A.M.J., Mosier N.S., Scott E.L., Beeftink H.H., Sanders J.P.M. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochem. Eng. J. 2009;43:92–97. doi: 10.1016/j.bej.2008.09.004. DOI

Gairola K., Smirnova I. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2 kinetics and application to biomass hydrolysates. Bioresour. Technol. 2012;123:592–598. doi: 10.1016/j.biortech.2012.07.031. PubMed DOI

Garrett E.R., Dvorchik B.H. Kinetics and mechanisms of the acid degradation of the aldopentose to furfural. J. Pharm. Sci. 1969;58:813–820. doi: 10.1002/jps.2600580703. PubMed DOI

Sturm G.S.J., Verweij M.D., van Gerven T., Stankiewicz A.I., Staefanidis G.D. On the effect of resonant microwave fields on temperature distribution in time and space. Int. J. Heat Mass Transf. 2012;55:3800–3811. doi: 10.1016/j.ijheatmasstransfer.2012.02.065. DOI

Xiouras C., Radacsi N., Sturm G., Stefanidis G.D. Furfural synthesis in the presence of sodium chloride: Microwaves versus conventional heating. ChemSusChem. 2016 doi: 10.1002/cssc.201600446. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...