Evolution of the climatic tolerance and postglacial range changes of the most primitive orchids (Apostasioideae) within Sundaland, Wallacea and Sahul
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27635348
PubMed Central
PMC5012329
DOI
10.7717/peerj.2384
PII: 2384
Knihovny.cz E-zdroje
- Klíčová slova
- Climatic tolerance, Ecology, Orchids, Postglacial migration, Species distribution modeling,
- Publikační typ
- časopisecké články MeSH
The location of possible glacial refugia of six Apostasioideae representatives is estimated based on ecological niche modeling analysis. The distribution of their suitable niches during the last glacial maximum (LGM) is compared with their current potential and documented geographical ranges. The climatic factors limiting the studied species occurrences are evaluated and the niche overlap between the studied orchids is assessed and discussed. The predicted niche occupancy profiles and reconstruction of ancestral climatic tolerances suggest high level of phylogenetic niche conservatism within Apostasioideae.
Department of Biodiversity Research Global Change Research Institute AS CR Brno Czech Republic
Department of Plant Taxonomy and Nature Conservation University of Gdansk Gdańsk Poland
Zobrazit více v PubMed
Adams JM, Faure H. Review and atlas of palaeovegetation: preliminary land ecosystem maps of the world since the last glacial maximum. 1997. http://www.esd.ornl.gov/projects/qen/adams1.html http://www.esd.ornl.gov/projects/qen/adams1.html
Baldwin SL, Fitzgerald PG, Webb LE. Tectonics of the New Guinea region. Annual Review of Earth and Planetary Sciences. 2012;40:495–520. doi: 10.1146/annurev-earth-040809-152540. DOI
Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberóna J, Villalobosb F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling. 2011;222:1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011. DOI
Boria RA, Olson LE, Goodman SM, Anderson RP. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling. 2014;275:73–77. doi: 10.1016/j.ecolmodel.2013.12.012. DOI
Cannon CH, Morley RJ, Bush AB. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:11188–11193. doi: 10.1073/pnas.0809865106. PubMed DOI PMC
Cloos M, Sapiie B, Quarles van Ufford A, Weiland RJ, Warren PQ, McMahon TP. Collisional delamination in New Guinea: the geotectonics of subducting slab breakoff. Geological Society of America Special Paper. 2005;400:1–51.
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Dávalos LM, Russell AL. Deglaciation explains bat extinction in the Caribbean. Ecology and Evolution. 2012;2(12):3045–3051. doi: 10.1002/ece3.399. PubMed DOI PMC
Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC M, Overton J, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI
Elith J, Phillips SJ, Hastie T, Dudık M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI
Evans ME, Smith SA, Flynn RS, Donoghue MJ. Climate, niche evolution, and diversification of the “bird-cage” evening primroses (Oenothera, sections Anogra and Kleinia) The American Naturalist. 2009;173(2):225–240. doi: 10.1086/595757. PubMed DOI
Exon N, Kennett J, Malone M, Brinkhuis H, Chaproniere G, Ennyu A, Fothergill P, Fuller M, Grauert M, Hill P, Janecek T, Kelly C, Latimer J, McGonigal K, Nees S, Ninnemann U, Nuernberg D, Pekar S, Pellaton C, Pfuhl H, Robert C, Röhl U, Schellenberg S, Shevenell A, Stickley C, Suzuki N, Touchard Y, Wei W, White T. Drilling reveals climatic consequences of Tasmanian Gateway Opening. Eos, Transactions American Geophysical Union. 2002;83(23):253–259.
Guo Y-Y, Luo Y-B, Liu Z-J, Wang X-Q. Evolution and biogeography of the slipper orchids: eocene vicariance of the conduplicate genera in the old and new world tropics. PLoS ONE. 2012;l7:e2384. doi: 10.1371/journal.pone.0038788. PubMed DOI PMC
Gustafsson AL, Verola CF, Antonelli A. Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae) BMC Evolutionary Biology. 2010;10:177. doi: 10.1186/1471-2148-10-177. PubMed DOI PMC
Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences. 2002;20:353–434. doi: 10.1016/S1367-9120(01)00069-4. DOI
Hall R. The palaeogeography of Sundaland and Wallacea since the Late Jurassic. Journal of Limnology. 2013;72(s2):1–17.
Hall R, Cottam MA, Wilson MEJ. The SE Asian gateway. History and tectonics of the Australia–Asia collison. The Geological Society; London: 2011.
Phyloclim: integrating phylogenetics and climatic Niche modeling. R package version 0.9-4Heibl C, Calenge C. http://CRAN.R-project.org/package=phyloclim 2013
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Hijmans RJ, Schreuder M, De La Cruz J, Guarino L. Using GIS to check co-ordinates of genebank accessions. Genetic Resources and Crop Evolution. 1999;46:291–296. doi: 10.1023/A:1008628005016. DOI
Hosner PA, Sánchez-González LA, Peterson AT, Moyle RG. Climate-driven diversification and pleistocene refugia in Philippine birds: evidence from phylogeographic structure and paleoenvironmental niche modeling. Evolution. 2014;68:2658–2674. doi: 10.1111/evo.12459. PubMed DOI
Jersáková J, Trávníček P, Kubátová B, Krejčíková J, Urfus T, Liu Z-J, Lamb A, Ponert J, Schulte K, Čurn V, Vrána J, Leitch I, Suda J. Genome size variation in the subfamily Apostasioideae: filling the phylogenetic gap in orchids. Botanical Journal of the Linnean Society. 2013;172:95–105. doi: 10.1111/boj.12027. DOI
Judd WS, Stern WL, Cheadle VI. Phylogenetic position of Apostasia and Neuwiedia(Orchidaceae) Botanical Journal of the Linnean Society. 1993;113:87–94. doi: 10.1111/j.1095-8339.1993.tb00331.x. DOI
Jukes T, Cantor C. Evolution of protein molecules. In: Munro H, editor. Mammalian protein metabolism. Academic Press; New York: 1969. pp. 21–132.
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics. 2008;9:286–298. doi: 10.1093/bib/bbn013. PubMed DOI
Kocyan A, Endress PK. Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. International Journal of Plant Sciences. 2001;162:847–867. doi: 10.1086/320781. DOI
Kocyan A, Qiu YL, Endress PK, Conti E. A phylogenetic analysis of Apostasioideae (Orchidaceae) based on ITS, trnL-F and matK sequences. Plant Systematics and Evolution. 2004;247:203–213.
Kolanowska M. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae) PLoS ONE. 2013;8:e2384. doi: 10.1371/journal.pone.0077352. PubMed DOI PMC
Kolanowska M, Konowalik K. Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchids species from Southeast Asia. Biotropica. 2014;46:157–165. doi: 10.1111/btp.12089. DOI
Lohman DJ, De Bruyn M, Page T, Von Rintelen K, Hall E, Ng PKL, Shih H-T, Carvalho GR, Von Rintelen T. Biogeography of the Indo-Australian Archipelago. Annual Review of Ecology Evolution and Systematics. 2011;42:205–226.
Mason SJ, Graham NE. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation. Quarterly Journal of the Royal Meteorological Society. 2002;128:2145–2166. doi: 10.1256/003590002320603584. DOI
Morley RJ. Palynological evidence for Tertiary plant dispersals in the South-east Asian region in relation to plate tectonics and climate. In: Hall R, Holloway J, editors. Biogeography and Geological Evolution of SE Asia. Backhuys; Leiden: 1998. pp. 211–234.
Naczk AM, Kolanowska M. Glacial refugia and future habitat coverage of selected Dactylorhiza representatives (Orchidaceae) PLoS ONE. 2015;10:e2384. doi: 10.1371/journal.pone.0143478. PubMed DOI PMC
Nordström S, Hedrén M. Genetic differentiation and postglacial migration of the Dactylorhiza majalis ssp. traunsteineri/lapponica complex into Fennoscandia. Plant Systematics and Evolution. 2008;276:73–87. doi: 10.1007/s00606-008-0084-1. DOI
O’Connell J, Allen J, Hawkes K. Pleistocene Sahul and the origins of seafaring. In: Anderson A, Barrett J, Boyle K, editors. The global origins and development of seafaring. McDonald Institute for Archaeological Research; Cambridge: 2010. pp. 57–68.
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI
Phillips SJ, Anderson R, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Phillips SJ, Dudík M, Schapire RE. ICML’04. Proceedings of the twenty-first international conference on Machine learning. ACM; New York: 2004. A maximum entropy approach to species distribution modeling; pp. 655–662.
Ramírez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature. 2007;448:1042–1045. doi: 10.1038/nature06039. PubMed DOI
Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Sanderson MJ. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution. 2002;19:101–109. doi: 10.1093/oxfordjournals.molbev.a003974. PubMed DOI
Stern WL, Cheadle VI, Thorsch J. Apostasiads, systematic anatomy, and the origins of Orchidaceae. Botanical Journal of the Linnean Society. 1993;111:411–455. doi: 10.1111/j.1095-8339.1993.tb01913.x. DOI
Su YCF, Saunders RMK. Evolutionary divergence times in the Annonaceae: evidence of a late Miocene origin of Pseuduvaria in Sundaland with subsequent diversification in New Guinea. BMC Evolutionary Biology. 2009;9:152. doi: 10.1186/1471-2148-9-152. PubMed DOI PMC
Szlachetko DL, Rutkowski P. Gynostemia Orchidalium. Vol. 1. Apostasiaceae, Cypripediaceae, Orchidaceae (Thelymitroideae to Vanilloideae) Acta Botanica Fennica. 2000;169:1–380.
Tänzler R, Van Dam MH, Toussaint EFA, Suhardjono YR, Balke M, Riedel A. Macroevolution of hyperdiverse flightless beetles reflects the complex geological history of the Sunda Arc. Scientific Reports. 2016;6:Article 18793. doi: 10.1038/srep18793. PubMed DOI PMC
Taylor KE, Stouffer RJ, Meehl GA. An Overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society. 2012;93:485–498. doi: 10.1175/BAMS-D-11-00094.1. DOI
Thiers B. Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium; 2015.
Van Hinsbergen DJ, Lippert PC, Dupont-Nivet G, McQuarrie N, Doubrovine PV, Spakman W, Torsvik TH. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:7659–7664. doi: 10.1073/pnas.1117262109. PubMed DOI PMC
Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607–611.
Xinqi Ch, Gale SW, Cribb PJ. Apostasioideae. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China. Vol. 25. Science Press and Missouri Botanical Garden Press; Beijing and St. Louis: 2009. pp. 20–21.
Young ND, Healy J. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics. 2003;4:6. doi: 10.1186/1471-2105-4-6. PubMed DOI PMC
Yukawa T, Ogura-Tsujita Y, Shefferson RP, Yokoyama J. Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. American Journal of Botany. 2009;96:1997–2009. doi: 10.3732/ajb.0900101. PubMed DOI