Niche conservatism and evolution of climatic tolerance in the Neotropical orchid genera Sobralia and Brasolia (Orchidaceae)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35978043
PubMed Central
PMC9385687
DOI
10.1038/s41598-022-18218-4
PII: 10.1038/s41598-022-18218-4
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- fylogeneze MeSH
- Orchidaceae * genetika MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sobralia and Brasolia form a large complex of Neotropical Orchidaceae. Although the molecular and morphological studies allowed to increase the rate of work on the modern classification of the taxa, they still require the attention as remaining without complete revision. The niche similarity analysis between representatives of Sobralia and recently segregated from this taxon-genus Brasolia is presented. The ecological tolerance evolution within the group was investigated with molecular clock analysis and phylogeny as the background. The phylogenetic analysis has confirmed the previous results and placed Brasolia representatives in a single clade with Elleanthus and Sobralia core as a separated group. The molecular clock analysis suggests that Sobralia and Brasolia are relatively young groups that evolved between 8.5 and 8 million years ago. Distribution of suitable niches of studied species is generally congruent with the known geographical ranges of particular taxa. The calculated niche overlap did not indicate any correlation between niche overlap and species phylogenetic relationships and remains low for both intra- and intergeneric relationships. The reconstruction of climatic tolerance evolution indicated that the studied species of Brasolia and Sobralia are characterized by generally similar ecological tolerance for most of the analyzed variables.
Zobrazit více v PubMed
Darwin C. On the Origin of Species. Facsimile of the First Edition. Harvard University Press; 1859.
Grafen A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1989;326:119–157. doi: 10.1098/rstb.1989.0106. PubMed DOI
Sillero N, Reis M, Vieira CP, Vieira J, Morales-Hojas R. Niche evolution and thermal adaptation in the temperate species Drosophila americana. J. Evol. Biol. 2014;27:1549–1561. doi: 10.1111/jeb.12400. PubMed DOI
Ramos R, Ramírez I, Paiva V, Militão T, Biscoito M, Menezes D, Phillips RA, Zino F, González-Solís J. Global spatial ecology of three closely-related gadfly petrels. Sci. Rep. 2016;6:23447. doi: 10.1038/srep23447. PubMed DOI PMC
Kumar B, Cheng J, Ge D, Xia L, Yang Q. Phylogeography and ecological niche modeling unravel the evolutionary history of the Yarkand hare, Lepus yarkandensis (Mammalia: Leporidae), through the Quaternary. BMC Evol. Biol. 2019;19:113. doi: 10.1186/s12862-019-1426-z. PubMed DOI PMC
Wiens JJ, Graham CH. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. 2005;36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431. DOI
Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 2008;11:995–1003. doi: 10.1111/j.1461-0248.2008.01229.x. PubMed DOI
Crisp MD, Cook LG. Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes? New Phytol. 2012;196:681–694. doi: 10.1111/j.1469-8137.2012.04298.x. PubMed DOI
Qian H, Ricklefs RE. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J. Ecol. 2004;92:253–265. doi: 10.1111/j.0022-0477.2004.00868.x. DOI
Vitt LJ, Zani PA, Espósito MC. Historical ecology of Amazonian lizards: Implications for community ecology. Oikos. 1999;87:286–294. doi: 10.2307/3546743. DOI
Rice NH, Martínez-Meyer E, Peterson AT. Ecological niche differentiation in the Aphelocoma jays: A phylogenetic perspective. Biol. J. Linn. Soc. 2003;80:369–383. doi: 10.1046/j.1095-8312.2003.00242.x. DOI
Jost L. Explosive local radiation of the genus Teagueia (Orchidaceae) in the Upper Pastaza Watershed of Ecuador. Lyonia. 2004;7:42–47.
Antonelli A, Verola CF, Parisod C, Gustafsson ALS. Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae) Biol. J. Linn. Soc. 2010;100:597–607. doi: 10.1111/j.1095-8312.2010.01438.x. DOI
Johnson SD, Linder HP, Steiner KE. Phylogeny and radiation of pollination systems in Disa (Orchidaceae) Am. J. Bot. 1998;85:402–411. doi: 10.2307/2446333. PubMed DOI
Kolanowska M, Grochocka E, Konowalik K. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ. 2017;5:e3328. doi: 10.7717/peerj.3328. PubMed DOI PMC
Dressler RL, Blanco MA, Pupulin F, Neubig KM. Proposal to conserve the name Sobralia (Orchidaceae) with a conserved type. Taxon. 2011;60:907–908. doi: 10.1002/tax.603030. DOI
Baranow P, Dudek M, Szlachetko DL. Brasolia, a new genus highlighted from Sobralia (Orchidaceae) Plant Syst. Evol. 2017;303:853–871. doi: 10.1007/s00606-017-1413-z. DOI
Dressler RL. The major sections or groups within Sobralia, with four new species from Panama and Costa Rica, S. crispissima, S. gloriana, S. mariannae and S. nutans. Lankesteriana. 2002;5:9–15.
Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. Genera Orchidacearum Vol. 4: Epidendroideae Part 1. Oxford University Press; 2005.
Van der Cingel NA. An Atlas of Orchid Pollination: America, Africa, Asia and Australia. Balkema; 2001.
Dodson CH. Why are there so many orchid species. Lankesteriana. 2003;7:99–103.
Van Der Pijl L, Dodson CH. Orchid Flowers: Their Pollination and Evolution. University of Miami Press; 1966.
Neubig KM. Systematics of Tribe Sobralieae (Orchidaceae): Phylogenetics, Pollination, Anatomy, and Biogeography of a Group of Neotropical Orchids. University of Florida; 2012.
Neubig KM, Whitten WM, Blanco WM, Endara L, Williams NH, Koehler S. Preliminary molecular phylogenetics of Sobralia and relatives (Orchidaceae; Sobralieae) Lankesteriana. 2011;11:307–317. doi: 10.15517/lank.v11i3.18286. DOI
Ramírez SR, Roubik DW, Skov C, Pierce NE. Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae) Biol. J. Linn. Soc. 2010;100:552–572. doi: 10.1111/j.1095-8312.2010.01440.x. DOI
Gregory-Wodzicki KM. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 2000;112:1091–1105. doi: 10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2. DOI
Sundell KE, Saylor JE, Lapen TJ, Horton BK. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci. Rep. 2019;9:4877. doi: 10.1038/s41598-019-41257-3. PubMed DOI PMC
Mescua JF, Porras H, Durán P, Giambiagi L, de Moor M, Cascante M, Salazar E, Protti M, Poblete F. Middle to late miocene contractional deformation in Costa Rica triggered by plate geodynamics. Tectonics. 2017;36:2936–2949. doi: 10.1002/2017TC004626. DOI
Kolanowska M, Mystkowska K, Kras M, Dudek M, Konowalik K. Evolution of the climatic tolerance and postglacial ranges of the most primitive orchids (Apostasioideae) within Sunduland, Wallacea and Sahul. PeerJ. 2016;4:e2384. doi: 10.7717/peerj.2384. PubMed DOI PMC
Arnal P, Coeur D’acier A, Favret C, Godefroid M, Qiao GX, Jousselin E, Sanchez Meseguer A. The evolution of climate tolerance in conifer-feeding aphids in relation to their host’s climatic niche. Ecol. Evol. 2019;9:11657–11671. doi: 10.1002/ece3.5652. PubMed DOI PMC
Zangiabadi S, Zaremaivan H, Brotons L, Mostafavi H, Ranjbar H. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLoS ONE. 2021;16:e0256918. doi: 10.1371/journal.pone.0256918. PubMed DOI PMC
Soberón J, Peterson A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2005 doi: 10.17161/bi.v2i0.4. DOI
Jiménez-Valverde A, Lobo J, Hortal J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 2008;14:885–890. doi: 10.1111/j.1472-4642.2008.00496.x. DOI
Bonetti MF, Wiens JJ. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. Biol. Sci. 2014;281:20133229. doi: 10.1098/rspb.2013.3229. PubMed DOI PMC
George PM, Walter EW, Yeuh-Lih Y. Realized versus fundamental niche functions in a model of chaparral response to climatic change. Ecol. Modell. 1992;7:261–277.
Hijmans RJ, Schreuder M, Cruz J, Guarino L. Using GIS to check co-ordinates of genebank accessions. Genet. Resour. Crop Evol. 1999;46:291–296. doi: 10.1023/A:1008628005016. DOI
Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In ICML '04. Proceedings of the Twenty-First International Conference on MACHINE LEARNing, 655–662 (ACM, New York, 2004).
Phillips SJ, Anderson R, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI
Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberóna J, Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 2011;222:1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011. DOI
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Fick SE, Hijmans RJ. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Brown JL. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014;5:694–700. doi: 10.1111/2041-210X.12200. PubMed DOI PMC
Feng X, Park DS, Liang Y, Pandey R, Papeş M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019 doi: 10.1002/ece3.5555. PubMed DOI PMC
Hosmer DW, Lemeshow S. Applied Logistic Regression. Wiley; 2000.
Mason SJ, Graham NE. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 2002;128:2145–2166. doi: 10.1256/003590002320603584. DOI
Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Norman JB, III, Barnett DT. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 2008;14:808–817. doi: 10.1111/j.1472-4642.2008.00486.x. DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).
Warren DL, Matzke NJ, Cardillo M, Baumgartner JB, Beaumont LJ, Turelli M, Dinnage R. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography. 2021;44:504–511. doi: 10.1111/ecog.05485. DOI
Schoener TW. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology. 1968;49:704–726. doi: 10.2307/1935534. DOI
Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution. 2008;62:2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x. PubMed DOI
Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Guisan A. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012;21:481–497. doi: 10.1111/j.1466-8238.2011.00698.x. DOI
Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic niche modeling. R package version 0.9-4. http://CRAN.R-project.org/package=phyloclim (2013).
Evans ME, Smith SA, Flynn RS, Donoghue MJ. Climate, niche evolution, and diversification of the ‘‘bird-cage’’ evening primroses (Oenothera, sections Anogra and Kleinia) Am. Nat. 2009;173:225–240. doi: 10.1086/595757. PubMed DOI
Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI
Galtier N, Gouy M, Gautier C. SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 1996;12:543–548. PubMed
Edgar R. MUSCLE: Mulitiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Nylander JAA. MrModeltest v2. Uppsala University; 2004.
Ronquist F, Huelsenbeck JP. MRBAYES: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Givnish T, Spalink D, Ames M, Lyon S, Hunter S, Zuluaga A, Iles W, Clements M, Kalin M, Leebens-Mack J, Endara L, Kriebel R, Neubig K, Whitten W, Williams N, Cameron K. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. Biol. Sci. 2015 doi: 10.1098/rspb.2015.1553. PubMed DOI PMC