Niche conservatism and evolution of climatic tolerance in the Neotropical orchid genera Sobralia and Brasolia (Orchidaceae)

. 2022 Aug 17 ; 12 (1) : 13936. [epub] 20220817

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35978043
Odkazy

PubMed 35978043
PubMed Central PMC9385687
DOI 10.1038/s41598-022-18218-4
PII: 10.1038/s41598-022-18218-4
Knihovny.cz E-zdroje

Sobralia and Brasolia form a large complex of Neotropical Orchidaceae. Although the molecular and morphological studies allowed to increase the rate of work on the modern classification of the taxa, they still require the attention as remaining without complete revision. The niche similarity analysis between representatives of Sobralia and recently segregated from this taxon-genus Brasolia is presented. The ecological tolerance evolution within the group was investigated with molecular clock analysis and phylogeny as the background. The phylogenetic analysis has confirmed the previous results and placed Brasolia representatives in a single clade with Elleanthus and Sobralia core as a separated group. The molecular clock analysis suggests that Sobralia and Brasolia are relatively young groups that evolved between 8.5 and 8 million years ago. Distribution of suitable niches of studied species is generally congruent with the known geographical ranges of particular taxa. The calculated niche overlap did not indicate any correlation between niche overlap and species phylogenetic relationships and remains low for both intra- and intergeneric relationships. The reconstruction of climatic tolerance evolution indicated that the studied species of Brasolia and Sobralia are characterized by generally similar ecological tolerance for most of the analyzed variables.

Zobrazit více v PubMed

Darwin C. On the Origin of Species. Facsimile of the First Edition. Harvard University Press; 1859.

Grafen A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1989;326:119–157. doi: 10.1098/rstb.1989.0106. PubMed DOI

Sillero N, Reis M, Vieira CP, Vieira J, Morales-Hojas R. Niche evolution and thermal adaptation in the temperate species Drosophila americana. J. Evol. Biol. 2014;27:1549–1561. doi: 10.1111/jeb.12400. PubMed DOI

Ramos R, Ramírez I, Paiva V, Militão T, Biscoito M, Menezes D, Phillips RA, Zino F, González-Solís J. Global spatial ecology of three closely-related gadfly petrels. Sci. Rep. 2016;6:23447. doi: 10.1038/srep23447. PubMed DOI PMC

Kumar B, Cheng J, Ge D, Xia L, Yang Q. Phylogeography and ecological niche modeling unravel the evolutionary history of the Yarkand hare, Lepus yarkandensis (Mammalia: Leporidae), through the Quaternary. BMC Evol. Biol. 2019;19:113. doi: 10.1186/s12862-019-1426-z. PubMed DOI PMC

Wiens JJ, Graham CH. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. 2005;36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431. DOI

Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 2008;11:995–1003. doi: 10.1111/j.1461-0248.2008.01229.x. PubMed DOI

Crisp MD, Cook LG. Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes? New Phytol. 2012;196:681–694. doi: 10.1111/j.1469-8137.2012.04298.x. PubMed DOI

Qian H, Ricklefs RE. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J. Ecol. 2004;92:253–265. doi: 10.1111/j.0022-0477.2004.00868.x. DOI

Vitt LJ, Zani PA, Espósito MC. Historical ecology of Amazonian lizards: Implications for community ecology. Oikos. 1999;87:286–294. doi: 10.2307/3546743. DOI

Rice NH, Martínez-Meyer E, Peterson AT. Ecological niche differentiation in the Aphelocoma jays: A phylogenetic perspective. Biol. J. Linn. Soc. 2003;80:369–383. doi: 10.1046/j.1095-8312.2003.00242.x. DOI

Jost L. Explosive local radiation of the genus Teagueia (Orchidaceae) in the Upper Pastaza Watershed of Ecuador. Lyonia. 2004;7:42–47.

Antonelli A, Verola CF, Parisod C, Gustafsson ALS. Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae) Biol. J. Linn. Soc. 2010;100:597–607. doi: 10.1111/j.1095-8312.2010.01438.x. DOI

Johnson SD, Linder HP, Steiner KE. Phylogeny and radiation of pollination systems in Disa (Orchidaceae) Am. J. Bot. 1998;85:402–411. doi: 10.2307/2446333. PubMed DOI

Kolanowska M, Grochocka E, Konowalik K. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ. 2017;5:e3328. doi: 10.7717/peerj.3328. PubMed DOI PMC

Dressler RL, Blanco MA, Pupulin F, Neubig KM. Proposal to conserve the name Sobralia (Orchidaceae) with a conserved type. Taxon. 2011;60:907–908. doi: 10.1002/tax.603030. DOI

Baranow P, Dudek M, Szlachetko DL. Brasolia, a new genus highlighted from Sobralia (Orchidaceae) Plant Syst. Evol. 2017;303:853–871. doi: 10.1007/s00606-017-1413-z. DOI

Dressler RL. The major sections or groups within Sobralia, with four new species from Panama and Costa Rica, S. crispissima, S. gloriana, S. mariannae and S. nutans. Lankesteriana. 2002;5:9–15.

Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. Genera Orchidacearum Vol. 4: Epidendroideae Part 1. Oxford University Press; 2005.

Van der Cingel NA. An Atlas of Orchid Pollination: America, Africa, Asia and Australia. Balkema; 2001.

Dodson CH. Why are there so many orchid species. Lankesteriana. 2003;7:99–103.

Van Der Pijl L, Dodson CH. Orchid Flowers: Their Pollination and Evolution. University of Miami Press; 1966.

Neubig KM. Systematics of Tribe Sobralieae (Orchidaceae): Phylogenetics, Pollination, Anatomy, and Biogeography of a Group of Neotropical Orchids. University of Florida; 2012.

Neubig KM, Whitten WM, Blanco WM, Endara L, Williams NH, Koehler S. Preliminary molecular phylogenetics of Sobralia and relatives (Orchidaceae; Sobralieae) Lankesteriana. 2011;11:307–317. doi: 10.15517/lank.v11i3.18286. DOI

Ramírez SR, Roubik DW, Skov C, Pierce NE. Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae) Biol. J. Linn. Soc. 2010;100:552–572. doi: 10.1111/j.1095-8312.2010.01440.x. DOI

Gregory-Wodzicki KM. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 2000;112:1091–1105. doi: 10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2. DOI

Sundell KE, Saylor JE, Lapen TJ, Horton BK. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci. Rep. 2019;9:4877. doi: 10.1038/s41598-019-41257-3. PubMed DOI PMC

Mescua JF, Porras H, Durán P, Giambiagi L, de Moor M, Cascante M, Salazar E, Protti M, Poblete F. Middle to late miocene contractional deformation in Costa Rica triggered by plate geodynamics. Tectonics. 2017;36:2936–2949. doi: 10.1002/2017TC004626. DOI

Kolanowska M, Mystkowska K, Kras M, Dudek M, Konowalik K. Evolution of the climatic tolerance and postglacial ranges of the most primitive orchids (Apostasioideae) within Sunduland, Wallacea and Sahul. PeerJ. 2016;4:e2384. doi: 10.7717/peerj.2384. PubMed DOI PMC

Arnal P, Coeur D’acier A, Favret C, Godefroid M, Qiao GX, Jousselin E, Sanchez Meseguer A. The evolution of climate tolerance in conifer-feeding aphids in relation to their host’s climatic niche. Ecol. Evol. 2019;9:11657–11671. doi: 10.1002/ece3.5652. PubMed DOI PMC

Zangiabadi S, Zaremaivan H, Brotons L, Mostafavi H, Ranjbar H. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLoS ONE. 2021;16:e0256918. doi: 10.1371/journal.pone.0256918. PubMed DOI PMC

Soberón J, Peterson A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2005 doi: 10.17161/bi.v2i0.4. DOI

Jiménez-Valverde A, Lobo J, Hortal J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 2008;14:885–890. doi: 10.1111/j.1472-4642.2008.00496.x. DOI

Bonetti MF, Wiens JJ. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. Biol. Sci. 2014;281:20133229. doi: 10.1098/rspb.2013.3229. PubMed DOI PMC

George PM, Walter EW, Yeuh-Lih Y. Realized versus fundamental niche functions in a model of chaparral response to climatic change. Ecol. Modell. 1992;7:261–277.

Hijmans RJ, Schreuder M, Cruz J, Guarino L. Using GIS to check co-ordinates of genebank accessions. Genet. Resour. Crop Evol. 1999;46:291–296. doi: 10.1023/A:1008628005016. DOI

Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In ICML '04. Proceedings of the Twenty-First International Conference on MACHINE LEARNing, 655–662 (ACM, New York, 2004).

Phillips SJ, Anderson R, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI

Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberóna J, Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 2011;222:1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011. DOI

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI

Fick SE, Hijmans RJ. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Brown JL. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014;5:694–700. doi: 10.1111/2041-210X.12200. PubMed DOI PMC

Feng X, Park DS, Liang Y, Pandey R, Papeş M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019 doi: 10.1002/ece3.5555. PubMed DOI PMC

Hosmer DW, Lemeshow S. Applied Logistic Regression. Wiley; 2000.

Mason SJ, Graham NE. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 2002;128:2145–2166. doi: 10.1256/003590002320603584. DOI

Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Norman JB, III, Barnett DT. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 2008;14:808–817. doi: 10.1111/j.1472-4642.2008.00486.x. DOI

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).

Warren DL, Matzke NJ, Cardillo M, Baumgartner JB, Beaumont LJ, Turelli M, Dinnage R. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography. 2021;44:504–511. doi: 10.1111/ecog.05485. DOI

Schoener TW. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology. 1968;49:704–726. doi: 10.2307/1935534. DOI

Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution. 2008;62:2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x. PubMed DOI

Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Guisan A. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012;21:481–497. doi: 10.1111/j.1466-8238.2011.00698.x. DOI

Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic niche modeling. R package version 0.9-4. http://CRAN.R-project.org/package=phyloclim (2013).

Evans ME, Smith SA, Flynn RS, Donoghue MJ. Climate, niche evolution, and diversification of the ‘‘bird-cage’’ evening primroses (Oenothera, sections Anogra and Kleinia) Am. Nat. 2009;173:225–240. doi: 10.1086/595757. PubMed DOI

Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

Galtier N, Gouy M, Gautier C. SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 1996;12:543–548. PubMed

Edgar R. MUSCLE: Mulitiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Nylander JAA. MrModeltest v2. Uppsala University; 2004.

Ronquist F, Huelsenbeck JP. MRBAYES: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC

Givnish T, Spalink D, Ames M, Lyon S, Hunter S, Zuluaga A, Iles W, Clements M, Kalin M, Leebens-Mack J, Endara L, Kriebel R, Neubig K, Whitten W, Williams N, Cameron K. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. Biol. Sci. 2015 doi: 10.1098/rspb.2015.1553. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...