The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
322465
European Research Council - International
PubMed
27647348
PubMed Central
PMC5068240
DOI
10.1084/jem.20160579
PII: jem.20160579
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- antigeny CD28 metabolismus MeSH
- biologické modely MeSH
- buňky NK metabolismus MeSH
- dendritické buňky metabolismus MeSH
- endocytóza MeSH
- genový targeting MeSH
- HEK293 buňky MeSH
- Jurkat buňky MeSH
- lidé MeSH
- lymfocyty metabolismus MeSH
- mapování interakce mezi proteiny MeSH
- mikrofilamentové proteiny chemie metabolismus MeSH
- multimerizace proteinu MeSH
- mutace genetika MeSH
- myeloidní buňky metabolismus MeSH
- myši MeSH
- proteinové domény MeSH
- proteomika MeSH
- regulační T-lymfocyty metabolismus MeSH
- signální transdukce MeSH
- T-lymfocyty metabolismus MeSH
- thymocyty metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD28 MeSH
- CARMIL1 protein, human MeSH Prohlížeč
- Carmil1 protein, mouse MeSH Prohlížeč
- mikrofilamentové proteiny MeSH
The RLTPR cytosolic protein, also known as CARMIL2, is essential for CD28 co-stimulation in mice, but its importance in human T cells and mode of action remain elusive. Here, using affinity purification followed by mass spectrometry analysis, we showed that RLTPR acts as a scaffold, bridging CD28 to the CARD11/CARMA1 cytosolic adaptor and to the NF-κB signaling pathway, and identified proteins not found before within the CD28 signaling pathway. We further demonstrated that RLTPR is essential for CD28 co-stimulation in human T cells and that its noncanonical pleckstrin-homology domain, leucine-rich repeat domain, and proline-rich region were mandatory for that task. Although RLTPR is thought to function as an actin-uncapping protein, this property was dispensable for CD28 co-stimulation in both mouse and human. Our findings suggest that the scaffolding role of RLTPR predominates during CD28 co-stimulation and underpins the similar function of RLTPR in human and mouse T cells. Along that line, the lack of functional RLTPR molecules impeded the differentiation toward Th1 and Th17 fates of both human and mouse CD4+ T cells. RLTPR was also expressed in both human and mouse B cells. In the mouse, RLTPR did not play, however, any detectable role in BCR-mediated signaling and T cell-independent B cell responses.
Centre d'Immunologie de Marseille Luminy Aix Marseille Université INSERM CNRS 13288 Marseille France
Centre d'Immunophénomique Aix Marseille Université INSERM CNRS 13288 Marseille France
Exbio Praha Vestec Czech Republic
School of Laboratory Medicine Xinxiang Medical University Xinxiang 453003 China
Wang et al. PubMed
Zobrazit více v PubMed
Ai H.W., Henderson J.N., Remington S.J., and Campbell R.E.. 2006. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400:531–540. 10.1042/BJ20060874 PubMed DOI PMC
Bunting M., Bernstein K.E., Greer J.M., Capecchi M.R., and Thomas K.R.. 1999. Targeting genes for self-excision in the germ line. Genes Dev. 13:1524–1528. 10.1101/gad.13.12.1524 PubMed DOI PMC
Chiossone L., Chaix J., Fuseri N., Roth C., Vivier E., and Walzer T.. 2009. Maturation of mouse NK cells is a 4-stage developmental program. Blood. 113:5488–5496. 10.1182/blood-2008-10-187179 PubMed DOI
Cox J., and Mann M.. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26:1367–1372. 10.1038/nbt.1511 PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., and Mann M.. 2011. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10:1794–1805. 10.1021/pr101065j PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., and Mann M.. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 13:2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC
Delogu A., Schebesta A., Sun Q., Aschenbrenner K., Perlot T., and Busslinger M.. 2006. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 24:269–281. 10.1016/j.immuni.2006.01.012 PubMed DOI
Dodson L.F., Boomer J.S., Deppong C.M., Shah D.D., Sim J., Bricker T.L., Russell J.H., and Green J.M.. 2009. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol. Cell. Biol. 29:3710–3721. 10.1128/MCB.01869-08 PubMed DOI PMC
Eastburn D.J., Zegers M.M., and Mostov K.E.. 2012. Scrib regulates HGF-mediated epithelial morphogenesis and is stabilized by Sgt1-HSP90. J. Cell Sci. 125:4147–4157. 10.1242/jcs.108670 PubMed DOI PMC
Edwards M., Zwolak A., Schafer D.A., Sept D., Dominguez R., and Cooper J.A.. 2014. Capping protein regulators fine-tune actin assembly dynamics. Nat. Rev. Mol. Cell Biol. 15:677–689. 10.1038/nrm3869 PubMed DOI PMC
Fan Q.R., and Hendrickson W.A.. 2005. Structure of human follicle-stimulating hormone in complex with its receptor. Nature. 433:269–277. 10.1038/nature03206 PubMed DOI PMC
Fujiwara I., Remmert K., and Hammer J.A. III. 2010. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3. J. Biol. Chem. 285:2707–2720. 10.1074/jbc.M109.031203 PubMed DOI PMC
Galea-Lauri J., Darling D., Gan S.U., Krivochtchapov L., Kuiper M., Gäken J., Souberbielle B., and Farzaneh F.. 1999. Expression of a variant of CD28 on a subpopulation of human NK cells: implications for B7-mediated stimulation of NK cells. J. Immunol. 163:62–70. PubMed
Hernandez-Valladares M., Kim T., Kannan B., Tung A., Aguda A.H., Larsson M., Cooper J.A., and Robinson R.C.. 2010. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nat. Struct. Mol. Biol. 17:497–503. 10.1038/nsmb.1792 PubMed DOI PMC
Higo K., Oda M., Morii H., Takahashi J., Harada Y., Ogawa S., and Abe R.. 2014. Quantitative analysis by surface plasmon resonance of CD28 interaction with cytoplasmic adaptor molecules Grb2, Gads and p85 PI3K. Immunol. Invest. 43:278–291. 10.3109/08820139.2013.875039 PubMed DOI
Horejsí V., Zhang W., and Schraven B.. 2004. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat. Rev. Immunol. 4:603–616. 10.1038/nri1414 PubMed DOI
Hukelmann J.L., Anderson K.E., Sinclair L.V., Grzes K.M., Murillo A.B., Hawkins P.T., Stephens L.R., Lamond A.I., and Cantrell D.A.. 2016. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17:104–112. 10.1038/ni.3314 PubMed DOI PMC
Jiang C., and Lin X.. 2012. Regulation of NF-κB by the CARD proteins. Immunol. Rev. 246:141–153. 10.1111/j.1600-065X.2012.01110.x PubMed DOI PMC
Junttila M.R., Saarinen S., Schmidt T., Kast J., and Westermarck J.. 2005. Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics. 5:1199–1203. 10.1002/pmic.200400991 PubMed DOI
Kibe T., Osawa G.A., Keegan C.E., and de Lange T.. 2010. Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol. Cell. Biol. 30:1059–1066. 10.1128/MCB.01498-09 PubMed DOI PMC
Kim T., Ravilious G.E., Sept D., and Cooper J.A.. 2012. Mechanism for CARMIL protein inhibition of heterodimeric actin-capping protein. J. Biol. Chem. 287:15251–15262. 10.1074/jbc.M112.345447 PubMed DOI PMC
Kong K.F., Yokosuka T., Canonigo-Balancio A.J., Isakov N., Saito T., and Altman A.. 2011. A motif in the V3 domain of the kinase PKC-θ determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat. Immunol. 12:1105–1112. 10.1038/ni.2120 PubMed DOI PMC
Lanier M.H., Kim T., Cooper J.A., Judokusumo E., Carmona G., Gertler F.B., Kam L.C., Carman C.V., Burkhardt J.K., Irvine D.J., and Dustin M.L.. 2015. CARMIL2 is a novel molecular connection between vimentin and actin essential for cell migration and invadopodia formation. Mol. Biol. Cell. 26:4577–4588. 10.1091/mbc.E15-08-0552 PubMed DOI PMC
Lanier M.H., McConnell P., and Cooper J.A.. 2016. Cell migration and invadopodia formation require a membrane-binding domain of CARMIL2. J. Biol. Chem. 291:1076–1091. 10.1074/jbc.M115.676882 PubMed DOI PMC
Liang Y., Niederstrasser H., Edwards M., Jackson C.E., and Cooper J.A.. 2009. Distinct roles for CARMIL isoforms in cell migration. Mol. Biol. Cell. 20:5290–5305. 10.1091/mbc.E08-10-1071 PubMed DOI PMC
Liang Y., Cucchetti M., Roncagalli R., Yokosuka T., Malzac A., Bertosio E., Imbert J., Nijman I.J., Suchanek M., Saito T., et al. . 2013. The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat. Immunol. 14:858–866. 10.1038/ni.2634 PubMed DOI
Macal M., Tam M.A., Hesser C., Di Domizio J., Leger P., Gilliet M., and Zuniga E.I.. 2016. CD28 Deficiency Enhances Type I IFN production by murine plasmacytoid dendritic cells. J. Immunol. 196:1900–1909. 10.4049/jimmunol.1501658 PubMed DOI PMC
Malissen B., Grégoire C., Malissen M., and Roncagalli R.. 2014. Integrative biology of T cell activation. Nat. Immunol. 15:790–797. 10.1038/ni.2959 PubMed DOI
Marinari B., Costanzo A., Viola A., Michel F., Mangino G., Acuto O., Levrero M., Piccolella E., and Tuosto L.. 2002. Vav cooperates with CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. Eur. J. Immunol. 32:447–456. 10.1002/1521-4141(200202)32:2<447::AID-IMMU447>3.0.CO;2-5 PubMed DOI
Mingueneau M., Roncagalli R., Grégoire C., Kissenpfennig A., Miazek A., Archambaud C., Wang Y., Perrin P., Bertosio E., Sansoni A., et al. . 2009. Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor. Immunity. 31:197–208. 10.1016/j.immuni.2009.05.013 PubMed DOI
Okkenhaug K., Wu L., Garza K.M., La Rose J., Khoo W., Odermatt B., Mak T.W., Ohashi P.S., and Rottapel R.. 2001. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat. Immunol. 2:325–332. 10.1038/86327 PubMed DOI
Pagán A.J., Pepper M., Chu H.H., Green J.M., and Jenkins M.K.. 2012. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J. Immunol. 189:2909–2917. 10.4049/jimmunol.1103231 PubMed DOI PMC
Pettitt S.J., Liang Q., Rairdan X.Y., Moran J.L., Prosser H.M., Beier D.R., Lloyd K.C., Bradley A., and Skarnes W.C.. 2009. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods. 6:493–495. 10.1038/nmeth.1342 PubMed DOI PMC
Raab M., Pfister S., and Rudd C.E.. 2001. CD28 signaling via VAV/SLP-76 adaptors: regulation of cytokine transcription independent of TCR ligation. Immunity. 15:921–933. 10.1016/S1074-7613(01)00248-5 PubMed DOI
Rodríguez C.I., Buchholz F., Galloway J., Sequerra R., Kasper J., Ayala R., Stewart A.F., and Dymecki S.M.. 2000. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25:139–140. 10.1038/75973 PubMed DOI
Roncagalli R., Hauri S., Fiore F., Liang Y., Chen Z., Sansoni A., Kanduri K., Joly R., Malzac A., Lähdesmäki H., et al. . 2014. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat. Immunol. 15:384–392. 10.1038/ni.2843 PubMed DOI PMC
Rozanski C.H., Utley A., Carlson L.M., Farren M.R., Murray M., Russell L.M., Nair J.R., Yang Z., Brady W., Garrett-Sinha L.A., et al. . 2015. CD28 promotes plasma cell survival, sustained antibody responses, and BLIMP-1 upregulation through its distal PYAP proline motif. J. Immunol. 194:4717–4728. 10.4049/jimmunol.1402260 PubMed DOI PMC
Shahinian A., Pfeffer K., Lee K.P., Kündig T.M., Kishihara K., Wakeham A., Kawai K., Ohashi P.S., Thompson C.B., and Mak T.W.. 1993. Differential T cell costimulatory requirements in CD28-deficient mice. Science. 261:609–612. 10.1126/science.7688139 PubMed DOI
Shevchenko A., Wilm M., Vorm O., and Mann M.. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68:850–858. 10.1021/ac950914h PubMed DOI
Shirasu K. 2009. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu. Rev. Plant Biol. 60:139–164. 10.1146/annurev.arplant.59.032607.092906 PubMed DOI
Soriano P. 1997. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development. 124:2691–2700. PubMed
Soskic B., Qureshi O.S., Hou T., and Sansom D.M.. 2014. A transendocytosis perspective on the CD28/CTLA-4 pathway. Adv. Immunol. 124:95–136. 10.1016/B978-0-12-800147-9.00004-2 PubMed DOI
Srivastava R., Burbach B.J., and Shimizu Y.. 2010. NF-kappaB activation in T cells requires discrete control of IkappaB kinase alpha/beta (IKKalpha/beta) phosphorylation and IKKgamma ubiquitination by the ADAP adapter protein. J. Biol. Chem. 285:11100–11105. 10.1074/jbc.M109.068999 PubMed DOI PMC
Tan Y.X., Manz B.N., Freedman T.S., Zhang C., Shokat K.M., and Weiss A.. 2014. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat. Immunol. 15:186–194. 10.1038/ni.2772 PubMed DOI PMC
Thome M., Charton J.E., Pelzer C., and Hailfinger S.. 2010. Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb. Perspect. Biol. 2:a003004 10.1101/cshperspect.a003004 PubMed DOI PMC
Tian R., Wang H., Gish G.D., Petsalaki E., Pasculescu A., Shi Y., Mollenauer M., Bagshaw R.D., Yosef N., Hunter T., et al. . 2015. Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor. Proc. Natl. Acad. Sci. USA. 112:E1594–E1603. 10.1073/pnas.1503286112 PubMed DOI PMC
Vang K.B., Yang J., Pagán A.J., Li L.X., Wang J., Green J.M., Beg A.A., and Farrar M.A.. 2010. Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J. Immunol. 184:4074–4077. 10.4049/jimmunol.0903933 PubMed DOI PMC
Wang X., Chuang H.C., Li J.P., and Tan T.H.. 2012. Regulation of PKC-θ function by phosphorylation in T cell receptor signaling. Front. Immunol. 3:197 10.3389/fimmu.2012.00197 PubMed DOI PMC
Wang Y., Ma C.S., Ling Y., Bousfiha A., Camcioglu Y., Jacquot S., Payne K., Crestani E., Roncagalli R., Belkadi A., et al. . 2016. Dual T cell– and B cell–intrinsic deficiency in humans with biallelic RLTPR mutations. J. Exp. Med. This issue. 10.1084/jem.20160576 PubMed DOI PMC
Yang C., Pring M., Wear M.A., Huang M., Cooper J.A., Svitkina T.M., and Zigmond S.H.. 2005. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev. Cell. 9:209–221. 10.1016/j.devcel.2005.06.008 PubMed DOI PMC
Yokosuka T., and Saito T.. 2010. The immunological synapse, TCR microclusters, and T cell activation. Curr. Top. Microbiol. Immunol. 340:81–107. 10.1007/978-3-642-03858-7_5 PubMed DOI
Zhang Q., Dove C.G., Hor J.L., Murdock H.M., Strauss-Albee D.M., Garcia J.A., Mandl J.N., Grodick R.A., Jing H., Chandler-Brown D.B., et al. . 2014. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J. Exp. Med. 211:2549–2566. 10.1084/jem.20141307 PubMed DOI PMC
Zhang Y., Muyrers J.P., Testa G., and Stewart A.F.. 2000. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18:1314–1317. 10.1038/82449 PubMed DOI
Zwolak A., Yang C., Feeser E.A., Ostap E.M., Svitkina T., and Dominguez R.. 2013. CARMIL leading edge localization depends on a non-canonical PH domain and dimerization. Nat. Commun. 4:2523 10.1038/ncomms3523 PubMed DOI PMC