Aspergillus fumigatus DBM 4057 biofilm formation is inhibited by chitosan, in contrast to baicalein and rhamnolipid

. 2016 Nov ; 32 (11) : 187. [epub] 20160922

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27660214
Odkazy

PubMed 27660214
DOI 10.1007/s11274-016-2146-9
PII: 10.1007/s11274-016-2146-9
Knihovny.cz E-zdroje

The biofilms of filamentous-forming fungi are a novel and still insufficiently understood research topic. We have studied Aspergillus fumigatus, an ubiquitous opportunistic pathogenic fungus, as a representative model for a study of biofilm formation by filamentous fungi and for assessing the potential anti-biofilm activity of natural substances. The activity of antibiotic amphotericin B and selected natural substances: baicalein, chitosan and rhamnolipid was studied. The minimum suspension inhibitory concentrations (MIC) were determined and the biofilm susceptibility was investigated by determining the metabolic activity of sessile cells (XTT assay) and total biofilm biomass (crystal violet staining). Significant time-dependent differences in substances' anti-biofilm activity were observed. Images of A. fumigatus biofilm were obtained by Cellavista automatic light microscope and spinning disc confocal microscopy. Baicalein and rhamnolipid were not found as suitable substances for inhibition of the A. fumigatus biofilm formation, as neither of the substances inhibited the sessile cells metabolic activity or the total biofilm biomass even at tenfold MIC after 48 h. In contrast, chitosan at 10 × MIC (25 µg mL-1), suppressed the biofilm metabolic activity by 90 % and the total biofilm biomass by 80 % even after 72 h of cultivation. Amphotericin B inhibited only 14 % of total biofilm biomass (crystal violet staining) and 35 % of metabolic activity (XTT assay) of adherent cells under the same conditions. Our results therefore suggest chitosan as potential alternative for treating A. fumigatus biofilm-associated infections.

Zobrazit více v PubMed

J Infect Chemother. 2004 Jun;10 (3):138-45 PubMed

J Bacteriol. 2000 May;182(10):2675-9 PubMed

Science. 2001 Feb 2;291(5505):878-81 PubMed

Clin Infect Dis. 2012 Dec;55(11):1441-9 PubMed

FEMS Microbiol Lett. 2011 Nov;324(2):89-97 PubMed

J Biotechnol. 2015 Jan 10;193:45-51 PubMed

J Clin Microbiol. 2003 Oct;41(10):4718-25 PubMed

Mil Med. 2012 Jun;177(6):681-5 PubMed

Med Mal Infect. 2013 Apr;43(4):139-45 PubMed

J Microbiol Methods. 2015 Nov;118:106-12 PubMed

Braz Dent J. 2008;19(4):364-9 PubMed

Med Mycol. 2014 Jan;52(1):2-9 PubMed

Cell Microbiol. 2007 Jun;9(6):1588-600 PubMed

Antimicrob Agents Chemother. 2013 Mar;57(3):1275-82 PubMed

Curr Drug Targets. 2005 Dec;6(8):875-86 PubMed

J Med Microbiol. 2007 Sep;56(Pt 9):1205-12 PubMed

Med Microbiol Immunol. 2014 Feb;203(1):25-33 PubMed

Int J Antimicrob Agents. 2010 Apr;35(4):322-32 PubMed

J Microbiol Biotechnol. 2009 Aug;19(8):803-9 PubMed

J Infect Dis. 2010 May 1;201(9):1436-40 PubMed

J Med Microbiol. 2012 Dec;61(Pt 12):1704-8 PubMed

J Microbiol Biotechnol. 2008 Oct;18(10):1729-34 PubMed

J Antimicrob Chemother. 2001 Jul;48 Suppl 1:5-16 PubMed

Bioresour Technol. 2010 Mar;101(6):1920-6 PubMed

J Antimicrob Chemother. 2008 Jun;61(6):1309-11 PubMed

Antimicrob Agents Chemother. 2011 May;55(5):2092-7 PubMed

Med Mycol. 2011 Apr;49 Suppl 1:S96-S100 PubMed

Mycopathologia. 1994 Dec;128(3):129-33 PubMed

Appl Microbiol Biotechnol. 2010 May;86(5):1323-36 PubMed

Curr Opin Microbiol. 2005 Aug;8(4):385-92 PubMed

Antimicrob Agents Chemother. 2014;58(4):2344-55 PubMed

N Engl J Med. 2012 Dec 6;367(23):2214-25 PubMed

Clin Microbiol Rev. 1999 Apr;12(2):310-50 PubMed

Int J Antimicrob Agents. 2008 Jul;32(1):73-7 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...