CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
27687771
PubMed Central
PMC5134710
DOI
10.1080/15384101.2016.1235100
PII: 10.1080/15384101.2016.1235100
Knihovny.cz E-resources
- Keywords
- Schizosaccharomyces pombe, biotin, catastrophic mitosis, cut, periodic gene expression, premature cytokinesis, transcription factor,
- MeSH
- Biotin metabolism MeSH
- DNA, Fungal metabolism MeSH
- Epistasis, Genetic MeSH
- Transcription, Genetic MeSH
- Genes, Fungal * MeSH
- Mitosis genetics MeSH
- Mutation genetics MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Fungal * MeSH
- Schizosaccharomyces pombe Proteins genetics metabolism MeSH
- Schizosaccharomyces cytology genetics MeSH
- Protein Binding genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biotin MeSH
- DNA, Fungal MeSH
- Schizosaccharomyces pombe Proteins MeSH
For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.
See more in PubMed
Gould KL. Protein kinases driving the cell cycle In: Egel R, editor. The Molecular Biology of Schizosaccharomyces pombe. Berlin, Germany: Springer; 2004; p. 27-40.
Sabatinos SA, Forsburg SL. Molecular genetics of Schizosaccharomyces pombe. Methods Enzymol 2010; 470:759-95; PMID:20946835; http://dx.doi.org/10.1016/S0076-6879(10)70032-X PubMed DOI
Carlson CR, Grallert B, Stokke T, Boye E. Regulation of the start of DNA replication in Schizosaccharomyces pombe. J Cell Sci 1999; 112:939-46; PMID:10036243 PubMed
Hirano T, Funahashi SI, Uemura T, Yanagida M. Isolation and characterization of Schizosaccharomyces pombe cut mutants that block nuclear division but not cytokinesis. EMBO J 1986; 5:2973-9; PMID:16453724 PubMed PMC
Yanagida M. Fission yeast cut mutations revisited: control of anaphase. Trends Cell Biol 1998; 8:144-9; PMID:9695827; http://dx.doi.org/10.1016/S0962-8924(98)01236-7 PubMed DOI
Saitoh S, Takahashi K, Nabeshima K, Yamashita Y, Nakaseko Y, Hirata A, Yanagida M. Aberrant mitosis in fission yeast mutants defective in fatty acid synthetase and acetyl CoA carboxylase. J Cell Biol 1996; 134:949-61; PMID:8769419; http://dx.doi.org/10.1083/jcb.134.4.949 PubMed DOI PMC
Rustici G, Mata J, Kivinen K, Lió P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P, Bähler J. Periodic gene expression program of the fission yeast cell cycle. Nat Genet 2004; 36:809-17; PMID:15195092; http://dx.doi.org/10.1038/ng1377 PubMed DOI
Peng X, Karuturi RKM, Miller LD, Lin K, Jia Y, Kondu P, Wang L, Wong L-S, Liu ET, Balasubramanian MK, et al.. Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 2005; 16:1026-42; PMID:15616197; http://dx.doi.org/10.1091/mbc.E04-04-0299 PubMed DOI PMC
Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B, Leatherwood J. The cell cycle-regulated genes of Schizosaccharomyces pombe. PLoS Biol 2005; 3:e225; PMID:15966770; http://dx.doi.org/10.1371/journal.pbio.0030225 PubMed DOI PMC
Garg A, Futcher B, Leatherwood J. A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Res 2015; 43:6874-88; PMID:25908789; http://dx.doi.org/10.1093/nar/gkv274 PubMed DOI PMC
Zilahi E, Salimova E, Simanis V, Sipiczki M. The S. pombe sep1 gene encodes a nuclear protein that is required for periodic expression of the cdc15 gene. FEBS Lett 2000; 481:105-8; PMID:10996305; http://dx.doi.org/10.1016/S0014-5793(00)01990-6 PubMed DOI
Bulmer R, Pic-Taylor A, Whitehall SK, Martin KA, Millar JBA, Quinn J, Morgan BA. The forkhead transcription factor Fkh2 regulates the cell division cycle of Schizosaccharomyces pombe. Eukaryot Cell 2004; 3:944-54; PMID:15302827; http://dx.doi.org/10.1128/EC.3.4.944-954.2004 PubMed DOI PMC
Buck V, Ng SS, Ruiz-Garcia AB, Papadopoulou K, Bhatti S, Samuel JM, Anderson M, Millar JBA, McInerny CJ. Fkh2p and Sep1p regulate mitotic gene transcription in fission yeast. J Cell Sci 2004; 117:5623-32; PMID:15509866; http://dx.doi.org/10.1242/jcs.01473 PubMed DOI
Papadopoulou K, Chen J-S, Mead E, Feoktistova A, Petit C, Agarwal M, Jamal M, Malik A, Spanos A, Sedgwick SG, et al.. Regulation of cell cycle-specific gene expression in fission yeast by the Cdc14p-like phosphatase Clp1p. J Cell Sci 2010; 123:4374-81; PMID:21098641; http://dx.doi.org/10.1242/jcs.073056 PubMed DOI
Martín-Cuadrado AB, Dueñas E, Sipiczki M, Vázquez de Aldana CR, del Rey F. The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 2003; 116:1689-98; http://dx.doi.org/10.1242/jcs.00377 PubMed DOI
Lowndes NF, McInerny CJ, Johnson AL, Fantes PA, Johnston LH. Control of DNA synthesis genes in fission yeast by the cell-cycle gene cdc10+. Nature 1992; 355:449-53; PMID:1734281; http://dx.doi.org/10.1038/355449a0 PubMed DOI
Aligianni S, Lackner DH, Klier S, Rustici G, Wilhelm BT, Marguerat S, Codlin S, Brazma A, de Bruin RAM, Bähler J. The fission yeast homeodomain protein Yox1p binds to MBF and confines MBF-dependent cell-cycle transcription to G1-S via negative feedback. PLoS Genet 2009; 5:e1000626; PMID:19714215; http://dx.doi.org/10.1371/journal.pgen.1000626 PubMed DOI PMC
de Bruin RAM, Kalashnikova TI, Aslanian A, Wohlschlegel J, Chahwan C, Yates JR, Russell P, Wittenberg C. DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1. Proc Natl Acad Sci U S A 2008; 105:11230-5; PMID:18682565; http://dx.doi.org/10.1073/pnas.0801106105 PubMed DOI PMC
Takayama Y, Takahashi K. Differential regulation of repeated histone genes during the fission yeast cell cycle. Nucleic Acids Res 2007; 35:3223-37; PMID:17452352; http://dx.doi.org/10.1093/nar/gkm213 PubMed DOI PMC
Vachon L, Wood J, Kwon E-JG, Laderoute A, Chatfield-Reed K, Karagiannis J, Chua G. Functional characterization of fission yeast transcription factors by overexpression analysis. Genetics 2013; 194:873-84; PMID:23695302; http://dx.doi.org/10.1534/genetics.113.150870 PubMed DOI PMC
Pursglove SE, Mackay JP. CSL: a notch above the rest. Int J Biochem Cell Biol 2005; 37:2472-7; PMID:16095948; http://dx.doi.org/10.1016/j.biocel.2005.06.013 PubMed DOI
Převorovský M, Půta F, Folk P. Fungal CSL transcription factors. BMC Genomics 2007; 8:233; PMID:17629904; http://dx.doi.org/10.1186/1471-2164-8-233 PubMed DOI PMC
Převorovský M, Atkinson SR, Ptáčková M, McLean JR, Gould K, Folk P, Půta F, Bähler J. N-termini of fungal CSL transcription factors are disordered, enriched in regulatory motifs and inhibit DNA binding in fission yeast. PLoS One 2011; 6:e23650; PMID:21858190; http://dx.doi.org/10.1371/journal.pone.0023650 PubMed DOI PMC
Oravcová M, Teska M, Půta F, Folk P, Převorovský M. Fission Yeast CSL Proteins Function as Transcription Factors. PLoS One 2013; 8:e59435; http://dx.doi.org/10.1371/journal.pone.0059435 PubMed DOI PMC
Převorovský M, Groušl T, Staňurová J, Ryneš J, Nellen W, Půta F, Folk P. Cbf11 and Cbf12, the fission yeast CSL proteins, play opposing roles in cell adhesion and coordination of cell and nuclear division. Exp Cell Res 2009; 315:1533-47; PMID:19101542; http://dx.doi.org/10.1016/j.yexcr.2008.12.001 PubMed DOI
Převorovský M, Oravcová M, Tvarůžková J, Zach R, Folk P, Půta F, Bähler J. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles. PLoS One 2015; 10:e0137820; PMID:26366556; http://dx.doi.org/10.1371/journal.pone.0137820 PubMed DOI PMC
Wood V, Harris MA, McDowall MD, Rutherford K, Vaughan BW, Staines DM, Aslett M, Lock A, Bähler J, Kersey PJ, et al.. PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res 2012; 40:D695-9; PMID:22039153; http://dx.doi.org/10.1093/nar/gkr853 PubMed DOI PMC
Stolz J. Isolation and characterization of the plasma membrane biotin transporter from Schizosaccharomyces pombe. Yeast 2003; 20:221-31; PMID:12557275; http://dx.doi.org/10.1002/yea.959 PubMed DOI
Phalip V, Lemoine Y, Jeltsch JM. Cloning of Schizosaccharomyces pombe bio2 by heterologous complementation of a Saccharomyces cerevisiae mutant. Curr Microbiol 1999; 39:348-0350; PMID:10525840; http://dx.doi.org/10.1007/s002849900470 PubMed DOI
Marguerat S, Jensen TS, de Lichtenberg U, Wilhelm BT, Jensen LJ, Bähler J. The more the merrier: comparative analysis of microarray studies on cell cycle-regulated genes in fission yeast. Yeast 2006; 23:261-77; PMID:16544289; http://dx.doi.org/10.1002/yea.1351 PubMed DOI PMC
Santos A, Wernersson R, Jensen LJ. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 2015; 43:D1140-4; PMID:25378319; http://dx.doi.org/10.1093/nar/gku1092 PubMed DOI PMC
Fernandez Sarabia MJ, McInerny C, Harris P, Gordon C, Fantes P. The cell cycle genes cdc22+ and suc22+ of the fission yeast Schizosaccharomyces pombe encode the large and small subunits of ribonucleotide reductase. Mol Gen Genet 1993; 238:241-51; PMID:8479429 PubMed
Walker GM. Synchronization of yeast cell populations. Methods Cell Sci 1999; 21:87-93; PMID:10728641; http://dx.doi.org/10.1023/A:1009824520278 PubMed DOI
Převorovský M. pREPORT: a multi-readout transcription reporter vector for fission yeast. Yeast 2015; 32:327-34; PMID:25395321; http://dx.doi.org/10.1002/yea.3055 PubMed DOI
Pacheco-Alvarez D, Solórzano-Vargas RS, Del Río AL. Biotin in metabolism and its relationship to human disease. Arch Med Res 2002; 33:439-47; PMID:12459313; http://dx.doi.org/10.1016/S0188-4409(02)00399-5 PubMed DOI
Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC, Sicinski P, Fauq A, Golde TE, Osborne BA. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 2009; 113:1689-98; PMID:19001083; http://dx.doi.org/10.1182/blood-2008-03-147967 PubMed DOI PMC
Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ, Miele L, Cardoso AA, Classon M, Carlesso N. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 2005; 202:157-68; PMID:15998794; http://dx.doi.org/10.1084/jem.20050559 PubMed DOI PMC
Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21:5925-34; PMID:11486031; http://dx.doi.org/10.1128/MCB.21.17.5925-5934.2001 PubMed DOI PMC
Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al.. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20:3427-36; PMID:11432830; http://dx.doi.org/10.1093/emboj/20.13.3427 PubMed DOI PMC
Curry CL, Reed LL, Broude E, Golde TE, Miele L, Foreman KE. Notch inhibition in Kaposi's sarcoma tumor cells leads to mitotic catastrophe through nuclear factor-kappaB signaling. Mol Cancer Ther 2007; 6:1983-92; PMID:17604336; http://dx.doi.org/10.1158/1535-7163.MCT-07-0093 PubMed DOI
Lasagni L, Ballerini L, Angelotti ML, Parente E, Sagrinati C, Mazzinghi B, Peired A, Ronconi E, Becherucci F, Bani D, et al.. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 2010; 28:1674-85; PMID:20680961; http://dx.doi.org/10.1002/stem.492 PubMed DOI PMC
Tun T, Hamaguchi Y, Matsunami N, Furukawa T, Honjo T, Kawaichi M. Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res 1994; 22:965-71; PMID:8152928; http://dx.doi.org/10.1093/nar/22.6.965 PubMed DOI PMC
Del Bianco C, Vedenko A, Choi SH, Berger MF, Shokri L, Bulyk ML, Blacklow SC. Notch and MAML-1 complexation do not detectably alter the DNA binding specificity of the transcription factor CSL. PLoS One 2010; 5:e15034; PMID:21124806; http://dx.doi.org/10.1371/journal.pone.0015034 PubMed DOI PMC
Yam C, He Y, Zhang D, Chiam K-H, Oliferenko S. Divergent strategies for controlling the nuclear membrane satisfy geometric constraints during nuclear division. Curr Biol 2011; 21:1314-9; PMID:21802294; http://dx.doi.org/10.1016/j.cub.2011.06.052 PubMed DOI
Takemoto A, Kawashima SA, Li J-J, Jeffery L, Yamatsugu K, Elemento O, Nurse P. Nuclear envelope expansion is crucial for proper chromosomal segregation during a closed mitosis. J Cell Sci 2016; 129:1250-9; PMID:26869222; http://dx.doi.org/10.1242/jcs.181560 PubMed DOI PMC
Arnone JT, Walters AD, Cohen-Fix O. The dynamic nature of the nuclear envelope: lessons from closed mitosis. Nucleus 2013; 4:261-6; PMID:23873576; http://dx.doi.org/10.4161/nucl.25341 PubMed DOI PMC
Witkin KL, Chong Y, Shao S, Webster MT, Lahiri S, Walters AD, Lee B, Koh JLY, Prinz WA, Andrews BJ, et al.. The budding yeast nuclear envelope adjacent to the nucleolus serves as a membrane sink during mitotic delay. Curr Biol 2012; 22:1128-33; PMID:22658600; http://dx.doi.org/10.1016/j.cub.2012.04.022 PubMed DOI PMC
Miki F, Kurabayashi A, Tange Y, Okazaki K, Shimanuki M, Niwa O. Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol Genet Genomics 2004; 270:449-61; PMID:14655046; http://dx.doi.org/10.1007/s00438-003-0938-8 PubMed DOI
Burr R, Stewart EV, Shao W, Zhao S, Hannibal-Bach HK, Ejsing CS, Espenshade PJ. Mga2 Transcription Factor Regulates an Oxygen-Responsive Lipid Homeostasis Pathway in Fission Yeast. J Biol Chem 2016; 291:12171-83; PMID:27053105; http://dx.doi.org/10.1074/jbc.M116.723650 PubMed DOI PMC
Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US. Dividing cells regulate their lipid composition and localization. Cell 2014; 156:428-39; PMID:24462247; http://dx.doi.org/10.1016/j.cell.2013.12.015 PubMed DOI PMC
Scaglia N, Tyekucheva S, Zadra G, Photopoulos C, Loda M. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle 2014; 13:859-68; PMID:24418822; http://dx.doi.org/10.4161/cc.27767 PubMed DOI PMC
Sanchez-Alvarez M, Zhang Q, Finger F, Wakelam MJO, Bakal C. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis. Open Biol 2015; 5:150093; PMID:26333836; http://dx.doi.org/10.1098/rsob.150093 PubMed DOI PMC
Yamada H, Kumada K, Yanagida M. Distinct subunit functions and cell cycle regulated phosphorylation of 20S APC/cyclosome required for anaphase in fission yeast. J Cell Sci 1997; 110:1793-804; PMID:9264466 PubMed
Yamashita YM, Nakaseko Y, Samejima I, Kumada K, Yamada H, Michaelson D, Yanagida M. 20S cyclosome complex formation and proteolytic activity inhibited by the cAMP/PKA pathway. Nature 1996; 384:276-9; PMID:8918880; http://dx.doi.org/10.1038/384276a0 PubMed DOI
Watanabe T. Teratogenic effects of biotin deficiency in mice. J Nutr 1983; 113:574-81; PMID:6827377 PubMed
Takeda K, Mori A, Yanagida M. Identification of genes affecting the toxicity of anti-cancer drug bortezomib by genome-wide screening in S. pombe. PLoS One 2011; 6:e22021; PMID:21760946; http://dx.doi.org/10.1371/journal.pone.0022021 PubMed DOI PMC
Kawashima SA, Takemoto A, Nurse P, Kapoor TM. Analyzing fission yeast multidrug resistance mechanisms to develop a genetically tractable model system for chemical biology. Chem Biol 2012; 19:893-901; PMID:22840777; http://dx.doi.org/10.1016/j.chembiol.2012.06.008 PubMed DOI PMC
Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bähler J. Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 2003; 14:214-29; PMID:12529438; http://dx.doi.org/10.1091/mbc.E02-08-0499 PubMed DOI PMC
Shiozaki K, Russell P. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 1995; 378:739-43; PMID:7501024; http://dx.doi.org/10.1038/378739a0 PubMed DOI
Koch A, Krug K, Pengelley S, Macek B, Hauf S. Mitotic substrates of the kinase aurora with roles in chromatin regulation identified through quantitative phosphoproteomics of fission yeast. Sci Signal 2011; 4:rs6; PMID:21712547; http://dx.doi.org/10.1126/scisignal.2001588 PubMed DOI
Carpy A, Krug K, Graf S, Koch A, Popic S, Hauf S, Macek B. Absolute proteome and phosphoproteome dynamics during the cell cycle of fission yeast. Mol Cell Proteomics 2014; 13:1925-36; PMID:24763107; http://dx.doi.org/10.1074/mcp.M113.035824 PubMed DOI PMC
Kettenbach AN, Deng L, Wu Y, Baldissard S, Adamo ME, Gerber SA, Moseley JB. Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the fission yeast DYRK kinase Pom1. Mol Cell Proteomics 2015; 14:1275-87; PMID:25720772; http://dx.doi.org/10.1074/mcp.M114.045245 PubMed DOI PMC
Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 1991; 194:795-823; PMID:2005825; http://dx.doi.org/10.1016/0076-6879(91)94059-L PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9:671-5; PMID:22930834; http://dx.doi.org/10.1038/nmeth.2089 PubMed DOI PMC
Matsuyama A, Shirai A, Yoshida M. A series of promoters for constitutive expression of heterologous genes in fission yeast. Yeast 2008; 25:371-6; PMID:18437702; http://dx.doi.org/10.1002/yea.1593 PubMed DOI
Van Driessche B, Tafforeau L, Hentges P, Carr AM, Vandenhaute J. Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance. Yeast 2005; 22:1061-8; PMID:16200506; http://dx.doi.org/10.1002/yea.1293 PubMed DOI
Rodríguez-Sánchez L, Rodríguez-López M, García Z, Tenorio-Gómez M, Schvartzman JB, Krimer DB, Hernández P. The fission yeast rDNA-binding protein Reb1 regulates G1 phase under nutritional stress. J Cell Sci 2011; 124:25-34; http://dx.doi.org/10.1242/jcs.070987 PubMed DOI
Gregan J, Rabitsch PK, Rumpf C, Novatchkova M, Schleiffer A, Nasmyth K. High-throughput knockout screen in fission yeast. Nat Protoc 2006; 1:2457-64; PMID:17406492; http://dx.doi.org/10.1038/nprot.2006.385 PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754-60; PMID:19451168; http://dx.doi.org/10.1093/bioinformatics/btp324 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078-9; PMID:19505943; http://dx.doi.org/10.1093/bioinformatics/btp352 PubMed DOI PMC
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief Bioinform 2013; 14:178-92; http://dx.doi.org/10.1093/bib/bbs017 PubMed DOI PMC
Matsuyama A, Arai R, Yashiroda Y, Shirai A, Kamata A, Sekido S, Kobayashi Y, Hashimoto A, Hamamoto M, Hiraoka Y, et al.. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 2006; 24:841-7; PMID:16823372; http://dx.doi.org/10.1038/nbt1222 PubMed DOI
Mitotic defects in fission yeast lipid metabolism 'cut' mutants are suppressed by ammonium chloride