Comparison of Silicon Nanocrystals Prepared by Two Fundamentally Different Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27699716
PubMed Central
PMC5047868
DOI
10.1186/s11671-016-1655-7
PII: 10.1186/s11671-016-1655-7
Knihovny.cz E-zdroje
- Klíčová slova
- Electrochemical etching, Low-pressure plasma, Photoluminescence, Silicon nanocrystals, Size distribution, Surface passivation,
- Publikační typ
- časopisecké články MeSH
This work compares structural and optical properties of silicon nanocrystals prepared by two fundamentally different methods, namely, electrochemical etching of Si wafers and low-pressure plasma synthesis, completed with a mechano-photo-chemical treatment. This treatment leads to surface passivation of the nanoparticles by methyl groups. Plasma synthesis unlike electrochemical etching allows selecting of the particle sizes. Measured sizes of the nanoparticles by dynamic light scattering show 3 and 20 nm for electrochemically etched and plasma-synthetized samples, respectively. Plasma-synthetized 20-nm particles do not exhibit photoluminescence due to absence of quantum confinement effect, and freshly appeared photoluminescence after surface passivation could indicate presence of organic molecules on the nanoparticle surface, luminescing instead of nanocrystal core. Electrochemically etched sample exhibits dramatic changes in photoluminescence during the mechano-photo-chemical treatment while no photoluminescence is observed for the plasma-synthetized one. We also used the Fourier transform infrared spectroscopy for comparison of the chemical changes happened during the treatment.
Zobrazit více v PubMed
Luterová K, Pelant I. Křemíkový laser – poslední chybějící článek pro křemíkovou fotoniku (in Czech) Československý časopis pro fyziku. 2004;54:320.
Canham L. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990; doi:10.1063/1.103561
edited by Ossicini S, Pavesi L, Priolo F. Light emitting silicon for microphotonics, Springer tracks in modern physics. Vol 194, Springer Verlag, Berlin; 2003
Kůsová K, Cibulka O, Dohnalová K, Pelant I, Matějka P, Žídek K, Valenta J, Trojánek F. Colloidal solution of organically capped Si nanocrystals in xylene: efficient photoluminescence in the yellow region. MRS Symp Proc. 2009;1145:MM04–MM13.
Kůsová K, Cibulka O, Dohnalová K, Pelant I, Fučíková A, Valenta J. Yellow-emitting colloidal suspensions of silicon nanocrystals: fabrication technology, luminescence performance and application prospects. Phys E. 2009; doi:10.1016/j.physe.2008.08.022
Kůsová K, Cibulka O, Dohnalová K, Žídek K, Fučíková A, Pelant I. Methods for the preparation of optically clear solutions of silicon nanocrystals with short-wavelength luminescence. 2012.
Otobe M, Kanai T, Ifuku T, Yajima H, Oda S. Nanocrystalline silicon formation in a SiH4 plasma cell. J Non-Crystalline Solids. 1996; doi:10.1016/0022-3093(96)00161-5
Kortshagen U. Nonthermal plasma synthesis of semiconductor nanocrystals. J. Phys. D: Appl. Phys. 2009; doi:10.1088/0022-3727/42/11/113001
Mangolini L, Jurbergs D, Rogojina E, Kortshagen U. Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. J Lumin. 2006; doi:10.1016/j.jlumin.2006.08.068
Herynková K, Podkorytov E, Šlechta M, Cibulka O, Leitner J, Pelant I. Colloidal solutions of luminescent porous silicon with different cluster sizers. Nanoscale Res Lett. 2014; doi:10.1186/1556-276X-9-478 PubMed PMC
Herynková K, Podkorytov E, Šlechta M, Cibulka O. Stabilization of silicon nanoparticles in colloidal solutions. To appear in: Phys. Stat. Sol. (c), (2016). (back cover)
Barwe B, Riedel R, Cibulka O, Pelant I, Benedikt J. Silicon nanoparticle formation depending on the discharge conditions of an atmospheric radio-frequency driven microplasma with argon/silane/hydrogen gases. J Phys D: Appl Phys. 2015; doi:10.1088/0022-3727/48/31/314001
Barwe B, Stein A, Cibulka O, Pelant I, Ghanbaja J, Belmonte T, Benedikt J. Generation of silicon nanostructures by atmospheric microplasma jet: the role of hydrogen admixture. Plasma Processes and Polym. 2015; doi:10.1002/ppap.201400047
Dohnalová K, Kůsová K, Pelant I, Valenta J, Gilliot P, Gallart M, Cregut O, Rehspringer JL, Honerlage B. Emission properties of a distributed feedback laser cavity containing silicon nanocrystals. J lumin. 2006; doi:10.1016/j.jlumin.2006.08.045
Yasar-Inceoglu O, Lopez T, Farshihagro E, Mangolini L. Silicon nanocrystal production through non-thermal plasma synthesis: a comparative study between silicon tetrachloride and silane precursors. Nanotechnology. 2012; doi:10.1088/0957-4484/23/25/255604 PubMed
Kůsová K, Cibulka O, Dohnalová K, Pelant I, Valenta J, Fučíková A, Žídek K, Lang J, Englich J, Matějka P, Štěpánek P, Bakardjieva S. Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure. ACS Nano. 2010; doi:10.1021/nn1005182 PubMed
Kůsová K, Cibulka O, Dohnalová K, Pelant I, Fučíková A, Valenta J. Yellow-emitting colloidal suspensions of silicon nanocrystals: fabrication technology, luminescence performance and application prospects. Physica E: Low-dimensional Systems and Nanostructures. 2009; doi:10.1016/j.physe.2008.08.022
Doose S, Neuweiler H, Sauer M. A close look at fluorescence quenching of organic dyes by tryptophan. Chemphyschem. 2005; doi:10.1002/cphc.200500191 PubMed
Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects, Phys. Rev. Lett. 2002; doi:10.1103/PhysRevLett.89.203002 PubMed
National Institute of Advanced Industrial Science and Technology. SDBSWeb: http://sdbs.db.aist.go.jp. Accessed 11 Apr 2016.
Lucovsky G, Yang J, Chao S, Tyler J, Czubatyj W. Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films. Phys. Rev. B 1983; http://dx.doi.org/10.1103/PhysRevB.28.3225 PubMed DOI
Gurtner C, Wun AW, Sailor MJ. Surface modification of porous silicon by electrochemical reduction of organo halides. Angew. Chem. Int. Ed. 1999; doi:10.1002/(SICI)1521-3773(19990712)38:13/14%3C1966::AID-ANIE1966%3E3.0.CO PubMed
Bateman JE, Eagling RD, Horrocks BR, Houlton A. A deuterium labeling, FTIR, and ab initio investigation of the solution-phase thermal reactions of alcohols and alkenes with hydrogen-terminated silicon surfaces. J. Phys. Chem. B. 2000; doi:10.1021/jp000080t
Kůsová K, Hapala P, Valenta J, Jelínek P, Cibulka O, Ondič L, Pelant I. Direct bandgap silicon: tensile-strained silicon nanocrystals. Adv Mater Interfaces. 2013; doi:10.1002/admi.201300042