Comparison of Silicon Nanocrystals Prepared by Two Fundamentally Different Methods

. 2016 Dec ; 11 (1) : 445. [epub] 20161003

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27699716
Odkazy

PubMed 27699716
PubMed Central PMC5047868
DOI 10.1186/s11671-016-1655-7
PII: 10.1186/s11671-016-1655-7
Knihovny.cz E-zdroje

This work compares structural and optical properties of silicon nanocrystals prepared by two fundamentally different methods, namely, electrochemical etching of Si wafers and low-pressure plasma synthesis, completed with a mechano-photo-chemical treatment. This treatment leads to surface passivation of the nanoparticles by methyl groups. Plasma synthesis unlike electrochemical etching allows selecting of the particle sizes. Measured sizes of the nanoparticles by dynamic light scattering show 3 and 20 nm for electrochemically etched and plasma-synthetized samples, respectively. Plasma-synthetized 20-nm particles do not exhibit photoluminescence due to absence of quantum confinement effect, and freshly appeared photoluminescence after surface passivation could indicate presence of organic molecules on the nanoparticle surface, luminescing instead of nanocrystal core. Electrochemically etched sample exhibits dramatic changes in photoluminescence during the mechano-photo-chemical treatment while no photoluminescence is observed for the plasma-synthetized one. We also used the Fourier transform infrared spectroscopy for comparison of the chemical changes happened during the treatment.

Zobrazit více v PubMed

Luterová K, Pelant I. Křemíkový laser – poslední chybějící článek pro křemíkovou fotoniku (in Czech) Československý časopis pro fyziku. 2004;54:320.

Canham L. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990; doi:10.1063/1.103561

edited by Ossicini S, Pavesi L, Priolo F. Light emitting silicon for microphotonics, Springer tracks in modern physics. Vol 194, Springer Verlag, Berlin; 2003

Kůsová K, Cibulka O, Dohnalová K, Pelant I, Matějka P, Žídek K, Valenta J, Trojánek F. Colloidal solution of organically capped Si nanocrystals in xylene: efficient photoluminescence in the yellow region. MRS Symp Proc. 2009;1145:MM04–MM13.

Kůsová K, Cibulka O, Dohnalová K, Pelant I, Fučíková A, Valenta J. Yellow-emitting colloidal suspensions of silicon nanocrystals: fabrication technology, luminescence performance and application prospects. Phys E. 2009; doi:10.1016/j.physe.2008.08.022

Kůsová K, Cibulka O, Dohnalová K, Žídek K, Fučíková A, Pelant I. Methods for the preparation of optically clear solutions of silicon nanocrystals with short-wavelength luminescence. 2012.

Otobe M, Kanai T, Ifuku T, Yajima H, Oda S. Nanocrystalline silicon formation in a SiH4 plasma cell. J Non-Crystalline Solids. 1996; doi:10.1016/0022-3093(96)00161-5

Kortshagen U. Nonthermal plasma synthesis of semiconductor nanocrystals. J. Phys. D: Appl. Phys. 2009; doi:10.1088/0022-3727/42/11/113001

Mangolini L, Jurbergs D, Rogojina E, Kortshagen U. Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. J Lumin. 2006; doi:10.1016/j.jlumin.2006.08.068

Herynková K, Podkorytov E, Šlechta M, Cibulka O, Leitner J, Pelant I. Colloidal solutions of luminescent porous silicon with different cluster sizers. Nanoscale Res Lett. 2014; doi:10.1186/1556-276X-9-478 PubMed PMC

Herynková K, Podkorytov E, Šlechta M, Cibulka O. Stabilization of silicon nanoparticles in colloidal solutions. To appear in: Phys. Stat. Sol. (c), (2016). (back cover)

Barwe B, Riedel R, Cibulka O, Pelant I, Benedikt J. Silicon nanoparticle formation depending on the discharge conditions of an atmospheric radio-frequency driven microplasma with argon/silane/hydrogen gases. J Phys D: Appl Phys. 2015; doi:10.1088/0022-3727/48/31/314001

Barwe B, Stein A, Cibulka O, Pelant I, Ghanbaja J, Belmonte T, Benedikt J. Generation of silicon nanostructures by atmospheric microplasma jet: the role of hydrogen admixture. Plasma Processes and Polym. 2015; doi:10.1002/ppap.201400047

Dohnalová K, Kůsová K, Pelant I, Valenta J, Gilliot P, Gallart M, Cregut O, Rehspringer JL, Honerlage B. Emission properties of a distributed feedback laser cavity containing silicon nanocrystals. J lumin. 2006; doi:10.1016/j.jlumin.2006.08.045

Yasar-Inceoglu O, Lopez T, Farshihagro E, Mangolini L. Silicon nanocrystal production through non-thermal plasma synthesis: a comparative study between silicon tetrachloride and silane precursors. Nanotechnology. 2012; doi:10.1088/0957-4484/23/25/255604 PubMed

Kůsová K, Cibulka O, Dohnalová K, Pelant I, Valenta J, Fučíková A, Žídek K, Lang J, Englich J, Matějka P, Štěpánek P, Bakardjieva S. Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure. ACS Nano. 2010; doi:10.1021/nn1005182 PubMed

Kůsová K, Cibulka O, Dohnalová K, Pelant I, Fučíková A, Valenta J. Yellow-emitting colloidal suspensions of silicon nanocrystals: fabrication technology, luminescence performance and application prospects. Physica E: Low-dimensional Systems and Nanostructures. 2009; doi:10.1016/j.physe.2008.08.022

Doose S, Neuweiler H, Sauer M. A close look at fluorescence quenching of organic dyes by tryptophan. Chemphyschem. 2005; doi:10.1002/cphc.200500191 PubMed

Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects, Phys. Rev. Lett. 2002; doi:10.1103/PhysRevLett.89.203002 PubMed

National Institute of Advanced Industrial Science and Technology. SDBSWeb: http://sdbs.db.aist.go.jp. Accessed 11 Apr 2016.

Lucovsky G, Yang J, Chao S, Tyler J, Czubatyj W. Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films. Phys. Rev. B 1983; http://dx.doi.org/10.1103/PhysRevB.28.3225 PubMed DOI

Gurtner C, Wun AW, Sailor MJ. Surface modification of porous silicon by electrochemical reduction of organo halides. Angew. Chem. Int. Ed. 1999; doi:10.1002/(SICI)1521-3773(19990712)38:13/14%3C1966::AID-ANIE1966%3E3.0.CO PubMed

Bateman JE, Eagling RD, Horrocks BR, Houlton A. A deuterium labeling, FTIR, and ab initio investigation of the solution-phase thermal reactions of alcohols and alkenes with hydrogen-terminated silicon surfaces. J. Phys. Chem. B. 2000; doi:10.1021/jp000080t

Kůsová K, Hapala P, Valenta J, Jelínek P, Cibulka O, Ondič L, Pelant I. Direct bandgap silicon: tensile-strained silicon nanocrystals. Adv Mater Interfaces. 2013; doi:10.1002/admi.201300042

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...