Adaptive dynamics of cuticular hydrocarbons in Drosophila

. 2017 Jan ; 30 (1) : 66-80. [epub] 20161114

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27718537

Grantová podpora
R01 GM100366 NIGMS NIH HHS - United States
R35 GM118165 NIGMS NIH HHS - United States

Cuticular hydrocarbons (CHCs) are hydrophobic compounds deposited on the arthropod cuticle that are of functional significance with respect to stress tolerance, social interactions and mating dynamics. We characterized CHC profiles in natural populations of Drosophila melanogaster at five levels: across a latitudinal transect in the eastern United States, as a function of developmental temperature during culture, across seasonal time in replicate years, and as a function of rapid evolution in experimental mesocosms in the field. Furthermore, we also characterized spatial and temporal changes in allele frequencies for SNPs in genes that are associated with the production and chemical profile of CHCs. Our data demonstrate a striking degree of parallelism for clinal and seasonal variation in CHCs in this taxon; CHC profiles also demonstrate significant plasticity in response to rearing temperature, and the observed patterns of plasticity parallel the spatiotemporal patterns observed in nature. We find that these congruent shifts in CHC profiles across time and space are also mirrored by predictable shifts in allele frequencies at SNPs associated with CHC chain length. Finally, we observed rapid and predictable evolution of CHC profiles in experimental mesocosms in the field. Together, these data strongly suggest that CHC profiles respond rapidly and adaptively to environmental parameters that covary with latitude and season, and that this response reflects the process of local adaptation in natural populations of D. melanogaster.

Zobrazit více v PubMed

Adrion JR, Hahn MW, Cooper BS. Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends in Genetics. 2015;31:434–444. PubMed PMC

Alves H, Rouault JD, Kondoh Y, Nakano Y, Yamamoto D, Kim YK, Jallon JM. Evolution of cuticular hydrocarbons of Hawaiian Drosophilidae. Behavioral Genetics. 2010;40:694–705. PubMed

Anderson M. Sexual selection. Princeton University Press; Princeton, NJ.: 1994.

Bakker TC, Pomiankowski A. The genetic basis of female mate preference. Journal of Evolutionary Biology. 1995;8:129–171.

Barton NH. Evolutionary quantitative genetics: how little do we know? Annual Review of Genetics. 1989;23:337–370. PubMed

Barton NH. Clines in polygenic traits. Genetics Research. 1999;74:223–236. PubMed

Behrman EL, Watson SS, O'Brien KR, Heschel MS, Schmidt PS. Seasonal variation in life history traits in two Drosophila species. Journal of Evolutionary Biology. 2015;28:1691–1704. PubMed PMC

Bergland AO, Tobler R, Gonzalez J, Schmidt PS, Petrov D. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. Molecular Ecology. 2015 DOI: 10.1111/mec.13455. PubMed PMC

Bergland AO, Behrman EL, O'Brien KR, Schmidt PS, Petrov DA. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PloS Genetics. 2014;10:e1004775. PubMed PMC

Blomquist GJ, Bagnères AG. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press; 2010.

Chapman RF, Simpson S. The Insects: Structure and Function. Cambridge University Press; Cambridge: 2012.

Chenoweth SF, Rundle HD, Blows MW. Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection. American Naturalist. 2008;171:22–34. PubMed

Cogni R, Kuczynski C, Koury S, Lavington E, Behrman EL, O'Brien KR, Schmidt PS, Eanes WF. The intensity of selection acting on the couch potato gene spatial-temporal variation in a diapause cline. Evolution. 2013;68:538–548. PubMed

Dembeck LM, Borocz K, Huang W. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife. 2015;4:e09861. PubMed PMC

Etges WJ, de Oliveira CC. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants. Ecology and Evolution. 2014;4:2033–2045. PubMed PMC

Everaerts C, Farine JP, Cobb M, Ferveur JF. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PloS One. 2010;5:e9607. PubMed PMC

Fabian DK, Kapun M, Nolte V, Koflere R, Schmidt PS, Schlotterer C, Flatt T. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Molecular Ecology. 2012;21:4748–4769. PubMed PMC

Fedina TY, Kuo TH, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD. Dietary Effects on Cuticular Hydrocarbons and Sexual Attractiveness in Drosophila. PLoS One. 2012;7:e49799. PubMed PMC

Ferveur JF. Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behavioral Genetics. 2005;35:279–295. PubMed

Ferveur JF. Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behavior Genetics. 2005;35:279–295. PubMed

Frentiu FD, Chenoweth SE. Clines in cuticular hydrocarbons in two Drosophila species with independent population histories. Evolution. 2010;64:1784–1794. PubMed

Gershman S, Delcourt M, Rundle HD. Sexual selection on Drosophila serrata male pheromones does not vary with female age or mating status. Journal of Evolutionary Biology. 2014;27:1279–86. PubMed

Gibbs A, Pomonis JG. Physical properties of insect cuticular hydrocarbons: model mixtures lipid interactions. Comparative Biochemistry & Physiology. 1995;112B:667–672.

Gibbs A, Rajpurohit S. Cuticular lipids and water balance. In: Blomquist GJ, Bagneres AG, editors. Insect hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press; Cambridge: 2010. pp. p100–120.

Gibbs AG. Water-proofing properties of cuticular lipids. American Zoologist. 1998;38:471–482.

Gibbs AG. Lipid melting and cuticular permeability: new insights into an old problem. Journal of Insect Physiology. 2002;48:391–400. PubMed

Gibbs AG. Water balance in desert Drosophila: lessons from non-charismatic microfauna. Comparative Biochemistry and Physiology. 2002;133:781–789. PubMed

Gibbs AG, Louie AK, Ayala JA. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: Is thermal acclimation beneficial? Journal of Experimental Biology. 1998;201:71–80. PubMed

Gibbs AG, Chippindale AK, Rose MR. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. Journal of Experimental Biology. 1997;200:1821–1832. PubMed

Gilchrist GW, Jeffers LM, West B, Folk DG, Suess J, Huey RB. Clinal patterns of desiccation and starvation resistance in ancestral and invading populations of Drosophila subobscura. Evolutionary Applications. 2008;1:513–523. PubMed PMC

Gomes CCG, Trigo JR, Eiras AE. Sex pheromone of the American warble fly, Dermatobia bominis: the role of cuticular hydrocarbons. Journal of Chemical Ecology. 2008;34:636–646. PubMed

Gosden TP, Svensson EI. Spatial and temporal dynamics in a sexual selection mosaic. Evolution. 2008;62:845–856. PubMed

Grillet M, Everaerts C, Houot B, Ritchie MG, Cobb M, Ferveur J-F. Incipient speciation in Drosophila melanogaster involves chemical signals. Scientific Reports. 2012;2:244. PubMed PMC

Grinsted L, Bilde T, d'Ettorre P. Cuticular hydrocarbons as potential kin recognition cues in a subsocial spider. Behavioral Ecology. 2011;22:1187–1194.

Hackman RH. Cuticle: biochemistry. In: Bereiter-Hahn J, Mateltsy AG, Richards KS, editors. Biology of the Integument. Springer-Verlag; Berlin: 1984. pp. p583–610.

Hadley NF. Epicuticular lipids of the desert tene-brionid beetle, Eleodes armata: seasonal and acclimatory effects on composition. Insect Biochemistry. 1977;7:277–283.

Hadley NF. Water relations of terrestrial Arthropods. Academic Press; San Diego: 1994.

Hedrick PW, Ginevan ME, Ewing EP. Genetic polymorphism in heterogeneous environments. Annual Review of Ecology Evolution & Systematics. 1976;7:1–32.

Hercus MJ, Hoffmann AA. Maternal and grand-maternal age influence offspring fitness in Drosophila. Proceedings of the Royal Society of London B. 2000;267:2105–2110. PubMed PMC

Hine E, Chenoweth SF, Blows MW. Multivariate quantitative genetics and the lek paradox: genetic variance in male sexually selected traits of Drosophila serrata under field conditions. Evolution. 2004;58:2754–2762. PubMed

Hoffmann AA, Harshman LG. Desiccation and starvation resistance in Drosophila: Patterns of variation at the species, population and intrapopulation levels. Heredity. 1999;83:637–643. PubMed

Hoffmann AA, Weeks AR. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica. 2007;129:133–147. PubMed

Hoffmann AA, Hallas R, Sinclair C, Mitrovski P. Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits. Evolution. 2001;55:1621–1630. PubMed

Hoffmann AA, Scott M, Partridge L, Hallas R. Overwintering in Drosophila melanogaster: outdoor field cage experiments on clinal and laboratory selected populations help to elucidate traits under selection. Journal of Evolutionary Biology. 2003;16:614–623. PubMed

Hoffmann AA, Sgro CM, Lawler SH. Ecological population genetics: The interface between genes and the environment. Annual Review of Genetics. 1995;29:349–370. PubMed

Hoffmann AA, Sgro CM, Weeks AR. Chromosomal inversion polymorphisms and adapation. Trends in Ecology and Evolution. 2004;19:482–488. PubMed

Hosken DJ, Stockely P, Tregenza T, Wedell N. Monogamy and the battle of the sexes. Annual Review of Entomology. 2009;54:361–378. PubMed

Howard RW, Blomquist GJ. Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annual Review of Ecology Evolution & Systematics. 2005;50:371–393. PubMed

Howard RW. Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR, editors. Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press; Lincoln (NE): 1993. pp. 179–226.

Howard RW, Howard CD, Colquhoun S. Ontogenetic and environmentally induced changes in cuticular hydrocarbons of Oryzaephilus surinamensis (Coleoptera: Cucujidae). Annals of the Entomological Society of America. 1995;88:485–495.

Ives PT. Further Genetic Studies of the South Amherst Population of Drosophila melanogaster. Evolution. 1970;24:507–518. PubMed

Jallon J-M, David JR. Variation in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution. 1987;41:294–302. PubMed

Jallon J-M. A few chemical words exchanged by Drosophila during courtship and mating. Behavior Genetics. 1984;14:441–478. PubMed

James AC, Azevedo RBR, Partridge L. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics. 1997;146:881–890. PubMed PMC

Johansson BG, Jones TM. The role of chemical communication in mate choice. Biological Reviews of the Cambridge Philosophical Society. 2007;82:265–289. PubMed

Johansson BG, Jones TM, Widemo F. Cost of pheromone production in a lekking Drosophila. Animal Behavior. 2005;69:851–858.

Kalra B, Parkash R, Aggarwal DD. Divergent mechanisms for water conservation in Drosophila species. Entomologia Experimentalis et Applicata. 2014;151:43–56.

Karan D, Dahiya N, Munjal AK, Gibert P, Moreteau B, Parkash R, David JR. Desiccation and starvation tolerance of adult Drosophila: opposite latitudinal clines in natural populations of three different species. Evolution. 1998;52:825–831. PubMed

Knibb WR. Chromosome inversion polymorphisms in Drosophila melanogaster II. Geographic clines and climatic associations in Australasia, North America and Asia. Genetica. 1982;58:213–221.

Kolaczkowski B, Kern AD, Holloway AK, Begun DJ. Genomic differentiation between temperate and tropical Australian populations of Drosophila melanogaster. Genetics. 2011;187:245–260. PubMed PMC

Kühnelt W. Uber den bau des insektenskeletter. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere Abteilung für Anatomie und Ontogenie der Tiere. 1928;50:219–278.

Kuo T,H, Fedina TY, Hansen I, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD. Insulin Signaling Mediates Sexual Attractiveness in Drosophila. PLoS Genet. 2012;8:e1002684. PubMed PMC

Kwan L, Rundle HD. Adaptation to desiccation fails to generate pre- and postmating isolation in replicate Drosophila melanogaster laboratory populations. Evolution. 2009;64:710–723. PubMed

Lavington E, Cogni R, Kuczynski K, Koury S, Behrman EL, O'Brien KR, Schmidt PS, Eanes WF. A small system—high resolution study of metabolic adaptation in the central metabolic pathway to temperate climates in Drosophila melanogaster. Molecular Biology & Evolution. 2014;31:2032–2041. PubMed PMC

Liimatainen JO, Jallon JM. Genetic analysis of cuticular hydrocarbons and their effect on courtship in Drosophila virilis and D. lummei. Behavioral Genetics. 2007;37:713–725. PubMed

Lockey KH. Lipids of the insect cuticle: origin, composition and function. Comparative Biochemistry & Physiology B Biochemistry & Molecular Biology. 1988;89:595–645.

Lord JC, Howard RW. A proposed role for the cuticular fatty amides of Liposcelis bostrychophila (Psocoptera: Liposcelidae) in preventing adhesion of entomopathogenic fungi with dryconidia. Mycopathologia. 2004;158:211–221. PubMed

Manly BFJ. The statistics of natural selection on animal populations. Chapman and Hall; London, New York: 1985.

McColl G, McKechnie SW. The Drosophila Heat Shock hsr-omega Gene: An Allele Frequency Cline Detected by Quantitative PCR. Molecular Biology & Evolution. 1999;16:1568–1574. PubMed

Ming QL, Lewis SM. Mate recognition and sex differences in cuticular hydrocarbons of the diurnal firefly Ellychnia corrusca (Coleoptera:Lampuridae). Annals of the Entomological Society of America. 2010;103:128–133.

Nelson DR, Lee RE. Cuticular lipids and desiccation resistance in overwintering larvae of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephirtidae). Comparative Biochemistry Physiology B. 2004;138:313–320. PubMed

Ohtsu T, Kimura MT, Katagiri C. How Drosophila species acquire cold tolerance qualitative changes of phospholipids. European Journal of Biochemistry. 1988;252:608–611. PubMed

Paaby AB, Blacket MJ, Hoffmann AA, Schmidt PS. Identification of a candidate adaptive polymorphism for Drosophila life history by parallel independent clines on two continents. Molecular Ecology. 2010;19:760–774. PubMed

Pardy JA. Electronic Thesis and Dissertation Repository. 2012. The genetic basis of cuticular hydrocarbon production in Drosophila melanogaster and D. simulans. http://ir.lib.uwo.ca/etd/832.

Parkash R, Ranga P. Divergence for tolerance to thermal-stress related traits in two Drosophila species of immigrans group. Journal of Thermal Biology. 2013;38:396–406.

Parkash R. Testing the melanism-desiccation hypothesis: A case study in Darwinian evolution. In: Sharma VP, editor. Nature at work: Ongoing Saga of Evolution. Springer India; 2010. pp. 279–306.

Parkash R, Kalra B, Sharma V. Changes in cuticular lipids, water loss and desiccation resistance in a tropical drosophilids: analysis of within population variation. Fly. 2008;2:189–197. PubMed

Parkash R, Sharma V, Kalra B. Impact of body melanization on desiccation resistance in montane populations of D. melanogaster. Analysis of seasonal variation. Journal of Insect Physiology. 2009;10:898–908. PubMed

Parkash R, Sharma V, Kalra B. Sexual dimorphism for water balance mechanisms in montane populations of Drosophila kikkwai. Biology Letters. 2010;6:570–574. PubMed PMC

Partridge L, Barrie B, Fowler K, French V. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution. 1994;48:1269–1276. PubMed

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics. 2007;81:559–575. PubMed PMC

R Core Team . R: A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria: 2015. URL: https://www.R-project.org/

Rajpurohit S, Nedved O. Clinal variation in fitness related traits in tropical drosophilids of the Indian subcontinent. Journal of Thermal Biology. 2013;38:345–354.

Rajpurohit S, Nedved O, Gibbs AG. Meta-analysis of geographical clines in desiccation tolerance of Indian drosophilids. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2013;164:391–398. PubMed

Roff DA. Life history evolution. Vol. 7. Sinauer Associates; Sunderland: 2002.

Romer F. The oenocytes of insects: Differentiation, changes during molting, and their possible involvment in the secretion of moulting hormone. In: Gupta AP, editor. Morphogenetic Hormones of Arthropods. Rutgers University Press; New Brunswick, New Jersey, U.S.A.: 1991.

Rouault J, Capy P, Jallon JM. Variations of male cuticular hydrocarbons with geoclimatic variables: an adaptive mechanism in Drosophila melanogaster? Genetica. 2001;110:117–130. PubMed

Rouault JD, Marican C, Wicker-Thomas C, Jallon JM. Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. simulans. Genetica. 2004;120:195–212. PubMed

Rouault J-D, Capy P, Jallon JM. Variations of male cuticular hydrocarbons with geoclimatic variables: An adaptive mechanism in Drosophila melanogaster? Genetica. 2000;110:117–130. PubMed

Rourke BC. Geographic and altitudinal variation in water balance and metabolic rate in a California grasshopper, Melanopus sanguinipes. Journal of Experimental Biology. 2000;203:2699–2712. PubMed

Savolainen O, Lascoux OM, Merilä J. Ecological genomics of local adaptation. Nature Reviews Genetics. 2013;14:807–820. PubMed

Schal C, Sevala VL, Young HP, Bachmann JAS. Sites of synthesis and transport pathways of insect hydrocarbons: cuticle and ovary as target tissues. American Zoologist. 1998;38:382–293.

Schmidt PS, Conde DR. Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster. Evolution. 2006;60:1602–1611. PubMed

Schmidt PS, Paaby AB. Reproductive diapause and life history clines in North American populations of Drosophila melanogaster. Evolution. 2008;62:1204–1215. PubMed

Schmidt PS, Matzkin LM, Ippolito M, Eanes WF. Geographic variation in diapause incidence, life history traits and climatic adaptation in Drosophila melanogaster. Evolution. 2005;59:1721–1732. PubMed

Sezgin E, Duvernell DD, Matzkin LM, Duan YH, Zhu CT, Verrelli BC, Eanes WF. Single-locus latitudinal clines and their relationship to temperate adaptation in metabolic genes and derived alleles in Drosophila melanogaster. Genetics. 2004;168:923–931. PubMed PMC

Sharma MD, Mitchell C, Hunt J, Tregenza T, Hosken DJ. The genetics of cuticular hydrocarbon profiles in the fruit fly Drosophila simulans. Journal of Heredity. 2012;103:230–239. PubMed

Singer TL. Roles of hydrocarbons in the recognition systems of insects. American Zoologist. 1998;38:394–405.

Šmilauer P, Lepš J. Multivariate analysis of ecological data using Canoco5. Cambridge University Press; Cambridge: 2014.

Smith RJ, Grula EA. Toxic components on the larval surface of the Corn-Earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. Journal Invertebrate Pathology. 1982;39:15–22.

Stearns SC. The Evolution of Life Histories. Oxford University Press; London: 1992.

Stillwell RC, Morse GE, Fox CW. Geographic variation in body size and sexual dimorphism of a seed-feeding beetle. American Naturalist. 2007;170:358–369. PubMed

Takahashi A, Fujiwara-Tsujii N, Yamaoka R, Itoh M, Ozaki M, Takano-Shimizu T. Cuticular hydrocarbon content that affects male mate preference of Drosophila melanogaster from West Africa. International Journal of Evolutionary Biology. 2012;2012:1–10. PubMed PMC

Toolson EC, Hadley NF. Seasonal effects on cuticular permeability and epicuticular lipid composition in Centruroides sculpturatus Ewing 1928 (Scorpiones: Buthidae). Journal of Comparative Physiology B. 1979;129:319–325.

Toolson EC. Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura. Journal of Experimental Zoology. 1982;222:249–253.

Toolson EV, Kuper-Simbron R. Laboratory Evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal acclimation ability. Evolution. 1989;43:468–473. PubMed

Turchin MC, Chiang CWK, Palmer CD, Sankararaman S, Reich D, GIANT consortium. Hirschhorn JN. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nature Genetics. 2012;44:1015–1019. PubMed PMC

Venard R, Jallon J-M. Evidence for an aphrodisiac pheromone of female Drosophila. Experientia. 1980;36:211–213.

Whitlock M. The analysis of biological data. Roberts and Co. Publishers; Greenwood Village, CO.: 2009.

Wicker-Thomas C. Pheromonal communication involved in courtship behavior in Diptera. Journal of Insect Physiology. 2007;53:1089–1100. PubMed

Wigglesworth VB. The physiology of the cuticle and of ecdysis in Rhodnius prolixus (Triatomidae, Hemiptera); with special reference to the function of the oenocytes and of the dermal glands. Quarterly Journal of Microscopical Science. 1933;76:270–318.

Wigglesworth VB. The Insect Cuticle. Biological Reviews. 1948;23:408–445. PubMed

Wigglesworth VB. Insect Physiology. Springer; 1984.

Yeaman S, Jarvis A. Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proc of Royal Society B: Biological Sciences. 2006;273:1587–1593. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Post-eclosion temperature effects on insect cuticular hydrocarbon profiles

. 2021 Jan ; 11 (1) : 352-364. [epub] 20201207

Zobrazit více v PubMed

Dryad
10.5061/dryad.j5bp7

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...